Skip to main content

Excitons and radiation damage in alkali halides

  • Conference paper
  • First Online:
Atomic Physics Methods in Modern Research

Part of the book series: Lecture Notes in Physics ((LNP,volume 499))

Abstract

In alkali halides the excitons are responsible for any energy conversion processes by optical excitation in the fundamental absorption band or by irradiation with charged particles or X-rays with various excitation energy densities. Exciton processes determinate also both luminescence and defect creation under heavy ion irradiation with an extremely high excitation energy density of 103 eV/Å. The heavy ion track in LiF crystals consist of lithium atom aggregates in the central part (with a radius of r lat ≤20 Å) and single color centers in the extended lateral track region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Wimmel. Quantum Physics & Observed Reality. A critical interpretation of quantum mechanics World Scientific, Singapore, 1992

    Google Scholar 

  2. J.T. Cushing. Quantum Mechanics. Historical contingency and the Copenhagen hegemony University Chicago Press, Chicago, 1994

    MATH  Google Scholar 

  3. Ed. W. Neuser, K. Neuser-von Oettingen. Quantenphilosophie Spektrum, Berlin, 1995

    Google Scholar 

  4. J. Frenkel. On the transformation of light into heat in solids I Phys. Rev. 37 (1931) 17–44; On the transformation of light into heat in solids II Phys. Rev. 37 (1931) 1276–1294

    Article  MATH  ADS  Google Scholar 

  5. N. Itoh and K. Tanimura. Formation of interstitial-vancancy pairs by electronic excitations in pure ionic crystals J. Phys. Chem. Solids 51 (1990) 717–735

    Article  ADS  Google Scholar 

  6. Ch.B. Lushchik. Creation of Frenkel Pairs by Excitons in Alkali Halides In: Physics of Radiation Effects in Crystals. Ed. R. A. Johnson, A. N. Orlov. Elsevier Science Publ., Amsterdam, 1986, 473–525

    Google Scholar 

  7. R.E. Peierls. Zur Theorie der Absorptionsspektren fester Körper Ann. Physik 13 (1932) 905–952

    Article  MATH  ADS  Google Scholar 

  8. H. Dessauer. Über einige Wirkungen von Strahlen IV. Zs. Phys. 20 (1923) 288–298

    Article  ADS  Google Scholar 

  9. W.C. Röntgen. Über die Elektrizitätsleitung in einigen Kristallen und über den Einfluß einer Bestrahlung darauf Ann. Phys. 64 (1921) 1–195

    Article  Google Scholar 

  10. G. H. Wannier. The structure of electronic excitation levels in insulating crystals Phys. Rev. 52 (1937) 191–199

    Article  MATH  ADS  Google Scholar 

  11. R.S. Knox. Theory of Excitons. Solid State Physics Vol.5, Ed. F. Seitz, D. Turnbull, Academic Press, New York, 1963

    Google Scholar 

  12. H. Rabin and C.C. Klick. Formation of F-centers at low and room temperature Phys. Rev. 117 (1960) 1005–1010

    Article  ADS  Google Scholar 

  13. A.L. Shluger and A.M. Stoneham. Small polarons in real crystals: concepts and problems. J. Phys. Condens. Matter 5 (1993) 3049–3086

    Article  ADS  Google Scholar 

  14. R.T. Williams and K.S. Song. The self-trapped exciton J. Phys. Chem. Solids 51 (1990) 679–716

    Article  ADS  Google Scholar 

  15. M. Klinger, Ch. Lushchik, T.V. Mashovets, G.A. Kholodar, M.K. Sheikman, M. Elango Defect formation in solids by decay of electronic excitations Sov. Phys. Usp. 28 (1985) 994–101

    Article  ADS  Google Scholar 

  16. K. Schwartz. The Physics of Optical Recording Springer Verlag, Berlin-Heidelberg, 1993

    Google Scholar 

  17. R. Hilsch and R.W. Pohl. Über die ersten ultravioletten Eigenfrequenzen einiger einfacher Kristalle Z. Physik 48 (1928) 384–396

    Article  ADS  Google Scholar 

  18. A. Smakula. Über die Verfärbung der Alkalihalogenidkristalle durch ultraviolettes Licht Zs. f. Physik 63 (1930) 762–770

    Article  ADS  Google Scholar 

  19. A. S. Davydov. Theory of Molecular Excitons Plenum Press, New York, 1971

    Google Scholar 

  20. M.N. Kabler and D.A. Paterson. Evidence for a triplet state of the self-trapped exciton in alkali halide crystals Phys. Rev. Lett. 19 (1967) 652

    Article  ADS  Google Scholar 

  21. R.A. Kink, G.G. Liidja, Ch.B. Lushchik, and T.A. Soovik. Izv. SSSR, ser. fiz. 31 (1967) 1982

    Google Scholar 

  22. T.G. Castner and W. Känzig. The electronic structure of V-centers J. Phys. Chem. Solids 3 (1957) 178–195

    Article  ADS  Google Scholar 

  23. Ch.B. Lushchik, G.G. Liidja, and M.A. Elango. Fiz. Tverd. Tela 6 (1964) 2256 (Sov. Phys. Solid State 6 (1965) 1789)

    Google Scholar 

  24. H.N. Hersh. Proposed excitonic mechanism of colour center formation in alkali halides Phys. Rev. 148 (1966) 928–932

    Article  ADS  Google Scholar 

  25. D. Pooley. Defect creation mechanism by excitons Proc. Phys. Soc. 87 (1966) 245

    Article  ADS  Google Scholar 

  26. N. Itoh. Self-trapped exciton model of heavy-ion track registration Proc. Intern. Conf. on Radiation Damage, Italy, 1995-in print

    Google Scholar 

  27. N. Itoh and T. Nakayama. Electronic excitation mechanism of sputtering and track formation by energetic ions in the electronic sputtering regime Nucl. Instr. Meth. B 13 (1986) 550–555

    ADS  Google Scholar 

  28. N. Itoh, K. Tanimura, A.M. Stoneham, and A.H. Harker. The initial production of defects in alkali halides: F and H centre production by non-radiative decay of self-trapped exciton J. Phys. C: Solid State Physics 10 (1977) 4197–4209

    Article  ADS  Google Scholar 

  29. N. Itoh, K. Tanimura Radiation effects in ionic solids Rad. Eff. 98 (1986) 269–287

    Article  Google Scholar 

  30. N. Itoh. Sputtering and dynamic interstitial motion in alkali halides Nucl. Instr. Meth. 132 (1976) 201–211

    Article  Google Scholar 

  31. N. Itoh and T. Nakayama. Mechanism of neutral particle emission from electron-hole plasma near solid surface Physics Lett. 92 A (1982) 471–484

    Article  ADS  Google Scholar 

  32. R.T. Williams, J.N. Bradford, and W.L. Faust. Short-pulse optical studies of exciton relaxation and F-center formation in NaCl, KCl, and NaBr Phys. Rev. B 18 (1978) 7038–7057

    ADS  Google Scholar 

  33. Ch.B. Lushchik, A.Ch. Lushchik. Decay of Electronic Excitations with Defect Formation in Solids Nauka, Moscow, 1989-in Russian

    Google Scholar 

  34. A. Lushchik, I. Kudrjavtseva, Ch. Lushchik, and E. Vasil'chenko. Creation of stable Frenkel defects by vacuum uv radiation in KBr crystals under conditions of multiplication of electronic excitations Phys. Rev. B 52 (1995) 10069–10072

    ADS  Google Scholar 

  35. A. Lushchik, E. Feldbach, R. Kink, and Ch. Lushchik. Secondary excitons in alkali halides Phys. Rev. B 53 (1996) 5379–5387

    ADS  Google Scholar 

  36. R.C. Alig, S. Bloom. Electron-hole pair creation energies in semiconductors Phys. Rev. Lett. 35 (1975) 1522–1525

    Article  ADS  Google Scholar 

  37. A. Sumi. Phase diagram of an exciton in phonon field J. Phys. Soc. Japan 43 (1977) 1286–1294

    Article  ADS  Google Scholar 

  38. F. Seitz. The motion of charged particles through solid matter Disc. Faraday Soc. 5 (1949) 271–289

    Article  Google Scholar 

  39. F. Seitz, J.S. Koehler. Displacements of atoms during irradiation Sol. Stat. Phys. 2, ed. F. Seitz and D. Turnbull, N.Y., Acad. Press, London, 1956

    Google Scholar 

  40. F. Seitz. Color centers in alkali halides. II. Rev. Mod. Phys. 26 (1954) 1–102

    Article  ADS  Google Scholar 

  41. H. Oldenburg. Thermoluminescence of fluorites Phil. Trans. Roy. Soc. London 3 (1705) 345

    Google Scholar 

  42. T.J. Pearsall. On the effects of electricity upon minerals which are phosphorescent by heat J. Royal Inst. 1 (1830) 77, 267

    Google Scholar 

  43. K. Przibram. Irradiation colors and luminescence Pergamon Press, London, 1956

    Google Scholar 

  44. K. J. Teegarden. Luminescence of potassium iodide Phys. Rev. 105 (1957) 1222–1227

    Article  ADS  Google Scholar 

  45. R.S. Knox, and K.J. Teegarden. In: Physics of Color Centers ed. W. B. Fowler, Academic Press, New York, 1968, p. 1

    Google Scholar 

  46. A. Dunlop, D. Lesser, P., H.. Effects induced by high electronic excitations in pure metals: a detailed study in iron Nucl. Instr. Meth. B 90 (1994) 330–341

    ADS  Google Scholar 

  47. A. Meftah, F. Brisard, J.M. Constantini, E. Dooryhee, M. Hage-Ali, M. Hervieu, J.P. Stoquert, F. Studer, and M. Toulemonde. Track formation in SiO 2 quartz and the thermal-spike mechanism Phys. Rev. B 49 (1994) 12457–12463

    ADS  Google Scholar 

  48. A M. Stoneham. Radiation effects in insulators Nucl. Instr. Meth. A 91 (1994) 1–11

    ADS  Google Scholar 

  49. E. Balanzat. Heavy ion induced effects in materials Rad. Eff. 126 (1993) 97–101

    Article  Google Scholar 

  50. J.F. Ziegler, J.P. Biersack, U. Littmark. TRIM 89. The stopping and ranges of ions in solids Pergamon Press, New York, 1985

    Google Scholar 

  51. M.P.R. Waligorski, R.N. Hamm, R. Katz. The radial distribution of dose around the path of a heavy ion in liquid water Nucl. Tracks Rad. Meas. 11 (1986) 309–319

    Article  Google Scholar 

  52. R. Katz, K.S. Loh, L. Daling, and G.-R. Huang. An analytic representation of the radial distribution of dose from energetic heavy ions in water, Si, LiF, NaI, and SiO 2 Rad. Eff. 114 (1990) 15–20

    Article  Google Scholar 

  53. A. Perez, E. Balanzat, J. Dural. Experimental study of point-defect creation in high-energy heavy-ion tracks Phys. Rev. B 41 (1990) 3943–3950

    ADS  Google Scholar 

  54. E. Balanzat, S. Bouffard, A. Cassimi, E. Dorothyee, L. Protin, J.P. Grandin, J.L. Doualan, and J. Margerie. Defect creation in alkali halides under dense electronic excitations: Experimental results on NaCl and KBr Nucl. Instr. Meth. B 91 (1994) 134–139

    ADS  Google Scholar 

  55. D.A. Young. Etching of radiation damage in lithium fluoride Nature 183 (1958) 375–378

    Article  ADS  Google Scholar 

  56. C.J. Delbecq, P. Pringsheim. Absorption bands in irradiated LiF J.Chem. Phys. 21 (1953) 794–800

    Article  ADS  Google Scholar 

  57. K.K. Schwartz, A.J. Vitol, A.V. Podins. Radiation effects in pile-irradiated LiF crystals Phys. Status Solidi 18 (1966) 897–909

    Article  Google Scholar 

  58. J.J. Gilman and W.G. Johnson. Dislocations, point-defect clusters, and cavities in neutron irradiated LiF crystals J. Appl. Phys. 29 (1958) 877–888

    Article  ADS  Google Scholar 

  59. K. Schwartz. Electronic excitations and defect creation in LiF crystals Nucl. Instr. Meth. B 107 (1996) 128–132. [61] K. Schwartz, C. Trautmann. Heavy ion induced radiation damage in LiF crystals GSI Nacrichten GSI 09-95 (1995) 13–15

    ADS  Google Scholar 

  60. K. Schwartz, C. Trautmann, and T. Steckenreiter. Ion tracks in LiF crystals GSI Jahresbericht 1995

    Google Scholar 

  61. D. Albrecht, P. Armbruster, and R. Spohr. Investigation of heavy ion produced defect structure by small angle scattering Appl. Phys. A 37 (1985) 37–44

    ADS  Google Scholar 

  62. A.T. Davidson, J.D. Comins, T.E. Derry, and F.S. Khumalo. The production of defects and colloids in litthium fluoride crystals by implantation with rare gas ions Rad. Eff. 98 (1986) 305–312

    Article  Google Scholar 

  63. N. Seifert, S. Vijayalakshmi, Q. Yan, A. Barnes, R. Albridge, H. Ye, N. Tolk, and W. Husinsky. Optical absorption spectroscopy of defects in halides Rad. Eff. 128 (1994) 15–26

    Article  Google Scholar 

  64. A.E. Hughes. Metal colloids in ionic crystals Adv. Physics 28 (1979) 717–828

    Article  ADS  Google Scholar 

  65. J.R.W. Weerkamp, J.C. Groote, J. Seinen, and H.W. den Hartog. Radiation damage in NaCl. I–IV Phys. Rev. B 50 (1994) 9781–9801

    ADS  Google Scholar 

  66. F. Agullo-Lopez, C.R.A. Catlow, P.D. Townsend. Point Defects in Materials Academic Press, London, 1988

    Google Scholar 

  67. G.A. Wagner, P. Van den Haute. Fission-track dating Ferdinand Enke Verlag, Stuttgart, 1992

    Google Scholar 

  68. M. Elango. Elementary inelastic radiation-induced processes American Institute of Physics, New York, 1991

    Google Scholar 

  69. M. Elango. Hot holes in irradiated ionic solids Rad. Eff. 128 (1994) 1–13

    Article  Google Scholar 

  70. M. Krämer and G. Kraft. Calculations of heavy ion track structure Radiation Environment Biophys. 33 (1994) 91–109

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Klaus Peter Jungmann Joachim Kowalski Irene Reinhard Frank Träger

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag

About this paper

Cite this paper

Schwartz, K. (1997). Excitons and radiation damage in alkali halides. In: Jungmann, K.P., Kowalski, J., Reinhard, I., Träger, F. (eds) Atomic Physics Methods in Modern Research. Lecture Notes in Physics, vol 499. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0104335

Download citation

  • DOI: https://doi.org/10.1007/BFb0104335

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63716-5

  • Online ISBN: 978-3-540-69632-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics