Skip to main content

Optical spectroscopy of metal clusters

  • Conference paper
  • First Online:
Atomic Physics Methods in Modern Research

Part of the book series: Lecture Notes in Physics ((LNP,volume 499))

Abstract

Optical properties of metal spheres (R>10nm) can be described by classical electrodynamics, i.e. Mie theory. The corresponding excitations are commonly called plasmon polaritons or simply plasmons. Application of this theory to large metal clusters is successsful, although for small clusters with less than 100 atoms it makes more sense to use the notation collective rather than plasmon excitations. The transition from molecular like to collective features apparently lies in the size region of about 8 to 20 atoms for free electron metals, however, unequivocal identification is difficult. Finally it should be mentioned that plasmon excitations in metal clusters have interesting properties like e.g. surface plasmon induced desorption processes which - similar to photoelectron spectroscopy or Surface Enhanced Raman Scattering - are strongly enhanced in the vicinity of resonance frequencies since they sensitively depend on the electric near field intensities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

  1. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, Springer Ser. Mat. Sci. 25, (1995)

    Google Scholar 

  2. G. Delacrétaz, L. Wöste, Surf. Sci. 156, 770 (1985)

    Article  ADS  Google Scholar 

  3. K. Selby, M. Vollmer, V. Kresin, J. Masui, W.A. de Heer, W.D. Knight, Phys. Rev. B 40, 5417 (1989)

    Article  ADS  Google Scholar 

  4. E. Mollwo, Gött. Nachr., Math.-Phys. Klasse, Heft 3, 254 (1932)

    Google Scholar 

  5. W.A. de Heer, K. Selby, V. Kresin, J. Masui, M. Vollmer, A. Châtelain, W. D. Knight, Phys. Rev. Lett. 59, 1805 (1987)

    Article  ADS  Google Scholar 

  6. W.A. de Heer, W.D. Knight, M.Y. Chou, M.L. Cohen, Solid State Physics 40, 93 (1987)

    Article  Google Scholar 

  7. J. Kowalski, T. Stehlin, F. Träger, M. Vollmer, Phase Transitions 24–21, 737 (1990)

    Article  Google Scholar 

  8. V. Kresin, Phys. Rep. 220, 1 (1992)

    Article  ADS  Google Scholar 

  9. W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993)

    Article  ADS  Google Scholar 

  10. M. Brack, Rev. Mod. Phys. 65, 677 (1993)

    Article  ADS  Google Scholar 

  11. U. Kreibig, in Handbook of Optical Properties Vol. II, CRC Press Inc., Boca Raton, Eds. P. Wißmann, R. Hummel (1996)

    Google Scholar 

  12. Proc. First Int. Sympos. on Small Part. and Inorg. Clusters (ISSPIC I), Eds.: J.-P. Borel, P. Joyes, J. Farges, B. Cabaud, J. de Phys. 38, C2 (1977); Proc. ISSPIC II Eds.: J.-P. Borel, J. Buttet, Surf. Sci. 106 (1981); Proc. ISSPIC III, Ed. K.H. Bennemann, J. Koutecky, Surf. Sci. 156 (1985); Proc. ISSPIC IV, Eds.: C. Chapon, M.F. Gillet, C.R. Henry, Z. Phys. D 12 (1989); Proc. ISSPIC V, Eds.: E. Recknagel, O. Echt, Z. Phys. D 19/20 (1991); Proc. ISSPIC VI, Ed.: S. Berry, J. Burdett, A.W. Castleman, Z. Phys. D 21 (1993); Proc. ISSPIC VII, Surf. Rev. Lett. (Japan) 3 (1996)

    Google Scholar 

  13. G. Mie, Ann. Phys. 25, 377 (1908)

    Article  Google Scholar 

  14. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles Wiley 1983

    Google Scholar 

  15. H. Hövel, S. Fritz, A. Hilger, U. Kreibig, M. Vollmer, Phys. Rev. B 48, 18178 (1993)

    Article  ADS  Google Scholar 

  16. H. Ehrenreich, H.R. Philipp, Phys. Rev. 128, 1622 (1962)

    Article  ADS  Google Scholar 

  17. J.H. Weaver, C. Krafka, D.W. Lynch, E.E. Koch, Physics Data: Optical Properties of Metals, Parts 1,2, FIZ Karlsruhe (1981)

    Google Scholar 

  18. T. Inagaki, L.C. Emerson, E.T. Arakawa, M.W. Wiliams, Phys. Rev. B 13, 2305 (1976)

    Article  ADS  Google Scholar 

  19. W. Hoheisel, U. Schulte, M. Vollmer, F. Träger, Appl. Phys. A 51, 271 (1990)

    Article  ADS  Google Scholar 

  20. U. Kreibig, Z. Phys. 234, 307 (1970)

    Article  ADS  Google Scholar 

  21. J. Koutecky, P. Fantucci, Chem. Rev. 86, 539 (1986)

    Article  Google Scholar 

  22. V. Bonacic-Koutecky, P. Fantucci, J. Koutecky, Chem. Rev. 91, 1035 (1991)

    Article  Google Scholar 

  23. W. Ekardt, Phys. Rev. Lett. 52, 1925 (1984)

    Article  ADS  Google Scholar 

  24. Phys. Rev. B 31, 6360 (1985)

    Google Scholar 

  25. V. Bonacic-Koutecky, P. Fantucci, J. Koutecky, Chem. Phys. Lett. 166, 32 (1990)

    Article  ADS  Google Scholar 

  26. T. Baumert, R. Thalweiser, V. Weiss, G. Gerber, Z. Phys. D 21, 131 (1993); see also Phys. Rev. Lett. 69, 1512 (1992)

    Article  ADS  Google Scholar 

  27. H. Kühling, K. Kobe, S. Rutz, E. Schreiber, L. Wöste, Z. Phys. D 21, 33 (1993); see also J. Phys. Chem. 98, 6679 (1994)

    Article  Google Scholar 

  28. J.A.A.J. Perenboom, P. Wyder, F. Meier, Phys. Rep. 78, 171 (1981)

    Article  ADS  Google Scholar 

  29. U. Kreibig, L. Genzel, Surf. Sci. 156, 678 (1985)

    Article  ADS  Google Scholar 

  30. W. Hoheisel, K. Jungmann, M. Vollmer, R. Weidenauer, F. Träger, Phys. Rev. Lett. 60, 1649 (1988); see also Appl. Phys. A 52, 445 (1991)

    Article  ADS  Google Scholar 

  31. M. Vollmer, R. Weidenauer, U. Schulte, W. Hoheisel, F. Träger, Phys. Rev. B 40, 12509 (1989)

    Article  ADS  Google Scholar 

  32. W. Hoheisel, M. Vollmer, F. Träger, Phys. Rev. B 48, 17463 (1993)

    Article  ADS  Google Scholar 

  33. U. Kreibig, J. Phys. F 4, 999 (1974)

    Article  ADS  Google Scholar 

  34. U. Kreibig, Habilitationsschrift, Saarbrücken (1977)

    Google Scholar 

  35. W. Hoheisel, M. Vollmer, F. Träger, Appl. Phys. A 52, 445 (1991)

    Article  ADS  Google Scholar 

  36. T. Götz, M. Vollmer, F. Träger, Appl. Phys. A 57, 101 (1993); see also Z. Physik D 33, 131 (1995)

    Article  ADS  Google Scholar 

  37. M. Vollmer, U. Kreibig, p. 216 in Nuclear Physics Concepts in the Study of Atomic Cluster Physics, Springer Lecture Notes in Physics 404 (1992), R. Schmidt, H.O. Lutz, R. Dreizler, (Eds.)

    Google Scholar 

  38. T. Götz, M. Vollmer, F. Träger, in Laser Ablation: Mechanisms and Applications II, American Institute of Physics Conf. Proc. 228, 32 (1994)

    Google Scholar 

  39. M. Vollmer, F. Träger, Z. Phys. D 3, 291 (1986); Surf. Sci. 187, 445 (1987)

    Article  ADS  Google Scholar 

  40. D.M. Mann, H.P. Broida, J. Appl. Phys. 44, 4950 (1973)

    Article  ADS  Google Scholar 

  41. J.D. Eversole, H.P. Broida, Phys. Rev. B 15, 1644 (1977)

    Article  ADS  Google Scholar 

  42. J. Hecht, J. Appl. Phys. 50, 7186 (1979)

    Article  ADS  Google Scholar 

  43. S. Mochizuki, R. Ruppin, J. Phys.: Cond. Matter 5, 135 (1993)

    Article  ADS  Google Scholar 

  44. R. Scholl, B. Weber, in The Physics and Chemistry of Finite Systems: From Clusters to Crystals, Eds.: P. Jena, S. Khanna, B. Rao, Nato Asi Series C 374, Kluwer (1992)

    Google Scholar 

  45. K. Selby, V. Kresin, J. Masui, M. Vollmer, W.A. de Heer, A. Scheidemann, W.D. Knight, Phys. Rev. B 43, 4565 (1991)

    Article  ADS  Google Scholar 

  46. M. Vollmer, K. Selby, V. Kresin, J. Masui, M. Kruger, W.D. Knight, Rev. Sci. Instr. 59, 1965 (1988)

    Article  ADS  Google Scholar 

  47. C.R. Wang, S. Pollack, M.M. Kappes, Chem. Phys. Lett. 166, 26 (1990); also J. Chem. Phys. 93, 3787 (1990); J. Chem. Phys. 94, 2496 (1991)

    Article  ADS  Google Scholar 

  48. V. Bonacic-Koutecky, M.M. Kappes, P. Fantucci, J. Koutecky, Chem. Phys. Lett. 170, 26 (1990)

    Article  ADS  Google Scholar 

  49. C. Bréchignac, P. Cahuzac, F. Carlier, M. de Frutos, J. Leygnier, Chem. Phys. Lett. 189, 22 (1992)

    Article  ADS  Google Scholar 

  50. J. Tiggesbäumker, L. Köller, H.O. Lutz, K.H. Meiwes-Broer, in Nuclear Physics Concepts in the Study of Atomic Cluster Physics, Eds.: R. Schmidt, H.O. Lutz, R. Dreizler, Springer Lecture Notes in Physics 404 (1992); see also Surf. Rev. and Lett. (Japan) 3, 509 (1996); Chem. Phys. Lett., in press

    Google Scholar 

  51. T. Baumert, G. Gerber, Adv. Atom., Mol. Opt. Phys. Vol 35, 163 (1995)

    Google Scholar 

  52. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)

    Article  ADS  Google Scholar 

  53. F. Träger, contribution in this book; see also Appl. Phys. A, in print

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Klaus Peter Jungmann Joachim Kowalski Irene Reinhard Frank Träger

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag

About this paper

Cite this paper

Vollmer, M. (1997). Optical spectroscopy of metal clusters. In: Jungmann, K.P., Kowalski, J., Reinhard, I., Träger, F. (eds) Atomic Physics Methods in Modern Research. Lecture Notes in Physics, vol 499. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0104333

Download citation

  • DOI: https://doi.org/10.1007/BFb0104333

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63716-5

  • Online ISBN: 978-3-540-69632-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics