SOME REMARKS ON THE CENTRAL LIMIT THEOREM IN C(S)

Evarist Giné ™,
Instituto Venezolano de Investigaciones Cientificas
and
University of California, Berkeley

The object of this note is to make two different remarks on central
limit theorems (CLTs) of the type proved by Strassen and Dudley (1969),
Gingé (1974) and Jain and Marcus (to appear). The first of them has to
do with speed of convergence: the kind of conditions on the modulus of
continuity of a C(S)-valued random variable under which these theorems
are proved seem to be also adequate for treating speed of convergence
questions by reduction to finite dimension, at least for the sup norm
functional and under certain conditions on the covariance of the vari-
able. The second remark consists of an application: one of these CLTs
(Giné (1974)) implies Donsker's invariance principle for variables with
2+8 moments, & positive, or even with less restrictive conditions, but
it does not seem to imply the invariance principle for variables with
only the second moment finite. The proofs will only be sketched. Com-

plete proofs as well as complementary results may appear elsewhere.

1. Bounds on the speed of convergence. The best result known on the

CLT in C(S8) is due to Jain and Marcus (to appear) and is as follows:
let {Xi}:.a:1 be a sequence of centered i.i.d. C(S)-valued random vari-

ables, (S,d) compact metric; if

(1) [Xl(w,s) - Xl(w,t)[ < M(w)e(s,t),
where M 1is a square integrable random variable and e 1Is a continu-
ous pseudo-distance such that féHl/Q(S,e,X)dx < @ (H is the metric en-

tropy of (S,e), i.e. H(S,e,x) = log inf {n: S=L)2:1Vi, diameviix}),
then

(2) weak#-1im__ LIn Y 2(x +...+x )] = L),
n>e 1 n

>

7 Dbeing the centered Gaussian process determined by Cov ¥ , which is

sample continuous.

Condition (1) with M = 1, was introduced by Strassen and Dudley
(1969) and, in the present form but with a stronger entropy condition,
by Giné& (1974).

Here we obtain some weak speed of convergence results for this the-

orem.
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Theorem 1. Let {Xi}:.::1 be a sequence of symmetric i.i.d. C(S)-valued

random variables ((S,d) compact metric) satisfying condition (1) with:
(i) MelL,(a,P) and EM’=1, and

(i1) H(S,e,x) < cx2¢e~1)

in a neighborhood of zero.

for some a€(0,1), C>0 and every x

Assume further that

(iii) E|X1(8)|3 < o for some se& S and

(iv) Var(X,;(s)) > o2 > 0 for every se€ S,

Then,

-1/2 -a/2(1-0)
2

(3) |P{n llxl(w)+...+xn(m)]lmix}-P{||Z<w)|lwix}l<ﬂ(x)(1og n)

where H(X) 1is bounded on bounded sets (and is at most 0(X) as A+x).

Remarks. The symmetry hypothesis for X, may be replaced by: X1(s) cen-
tered for every s and E(X(s)-X, (£))7¥8/[E(X)(s)-Xy(1))2](2¥8)/25¢
for some 6>0 and C>0 and all s,t such that Xl(s)—Xl(t) is non-
degenerate. If Mel (Q,P) or if H(S,e,x) < Cxa'l, then X4 can be
taken centered instead of symmetric. If instead of (iv), the covarian-
ce of X1 equals the covariance of Brownian motion or the Rrownian brid-
ge, then the theorem is still true and in fact H{X) may be taken to be
a constant. Under stronger conditions on the metric entropv we can ob-
tain bounds in (3) décreasing as a power of n (if H(S,e,x)<log x_l/a
then the bound is of the order of H()n~ %/ 8(2-a)y,

The proof of Theorem 1 1is based on the following three lemmas.

Lemma 1. Under the conditions of Theorem 1 there exist constants c!
and C" such that, from some r on and for every n,
—1/2|

~ar-1 3n—1/2

+C"EM

' o—al
(%) P{Supe(s,t)iZ_r n 5 (s)-S (£)[>C"27 " 3<C2 s

where S denotes X,+...+X
n 1 n

The proof of this lemma follows the pattern of the proof of proba-
ble equicontinuity of n_l/zsn in the theorem of Jain and Marcus (to
appear). The stronger condition (ii) on the metric entropy of (S,e)
makes 1t possible to give explicit values to the positive numbers 6,

e and n in inequality (2.18) there.

Lemma 2. Let (T,d) be a compact metric space and let 7 Dbe a cente-
red sample continuous Gaussian process on T such that EZz(t)iOQ>O
for every t eT. Then, the distributions of the random variables

sup, . p2(t) and sup, cplZ2(t)| are absolutely continuous with respect
to Lebesgue measure and their densities have versions which are bounded
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on bounded sets (and grow at most as 0(X) as A-w),

Lemma 2 1is a direct consequence of some results of Ylvisaker (1965)
and (1968).

Given any two points y and =z in Rk, let R{y,z) be the k-di-

mensional parallelogram which vertices are all the points with each co-
ordinate either equal to the corresponding one of y or to the corres-

ponding one of z. With this notation we have:

Lemma 3. Let {xl}l =4 Dbe a sequence of centered i.i.d. random variables
with values in RX such that E|x1|3<w and, if Xy = (Xll,...,Xlk)a
Ex1§ >3O fgr 3;;1,...,k. Let A be the covariance of ®y and let pj=
E|x1j] /(Exlj) > j=1,....k. Thin there exists a universal constant
C"'  such that, for every vy,ze?R,

-1/2 5/3[ -1/2 k ]1/3.

[P {n Ti=1°%1

(x1+...+xn)eR(y,z)}—N(O,A)(R(y,z))I<C”'

This lemma can be proved similarly to Theorem 3 in Sazonov (1968);

the main change consists in the use of Lemma Y% in Paulauskas (1969).

Next we show how these three lemmas are used in the proof of Theo-

rem 1.
Let {Si}?:l be a finite subset of S. Then, with Sn = X1+"'+Xn’
we have
(5) [Pt 2 s (w1 220 - PUL[2Cw) || 220 [
[P{n_l/zlls ()] _>A} - P{max, n_i/ZIS (s.)|>2}] +
n w0 i n 71
-1/2
|P{maxi n ISn(si)|iA} - P{maxi}Z(si)|3A}|+

Pz 1] >} - Pimax, [2(s;) |221].

Let us call A, B and C vrespectively the first, second and third

summands in the second term of this inequality. The term R can be es-

timated by means of Lemma 3. If X = E!]Xl(w)lfi then, o, < o3 and
therefore, for
(6) K = nt/2%,
Lemma 3 gives
(7 B < yonrglt/ 8,7 1,m1/12
Note now that
(8) A < P{nhl/zlls ) ] 2, max; _1/219 (s.)|<x—e} +
[P{maxi n~1/2 [Sn(siﬂzg-—g} - P max; n 1/2[5 (s)>a3]

Denote by A, and A, respectively the first and second summands in
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the second term of (8). If {Si} is x~-dense 1in (S,e), then,

-1/2

)2l -
Ay < '{Supe(s,t)jx n fSn(s) Sn(t)lie}.

By (6) and hypothesis (ii), we can choose the set {si} x-dense with x
of the order of (log n)_l/Q(l—a). Then, taking e = C'x” in (%), Lemma
1, we obtain the following bound for gt
(3) n, <27 (log ny-o/2(1-a)

Adding and substracting P{mainZ(si)IzA—a} - P{maxi|Z(si)|3A} to A,
and applying Lemma 2 and Lemma 3, we have

1/3 -1 _-1/12 —a/2(1~a)
¢ 'n

(10) A, < 8C'K

where K(A) i1s bounded on bounded sets and is at most O0(Xx) as A=,

+ K(AM)(log n)

The function K(A) 1is independent of the set {si}. The guantity C
can be bounded as A because the process 7 satisfies an inequality
similar to (4); the only difference is that Lemma 3 is not needed. Now
Theorem 1 follows from (7)-(10).

2. The invariance principle. Theorem 1 in Giné (1974) can be restated

for triangular arrays:

Theorem 2. Let {Y ,5...,Y ., } .4

independent for each n) of céntered, C(S)-valued random variables such n

bte a triangular array (Ynl""’ Ynk

that EYEk(s) < » for every s, n and k. Suppose:

(i) there exists a centered Gaussian process Z on S such that
the finite dimensional distributions of S_ = Y _+...+Y
n nil nky
converge to the ones of 7, and

(ii) the pseudo-distance

e(s,t) = sup_||[S + supn,kll‘!nk(s)—‘{nk(t)ll°°

[
n L2

is continuous and such that /f§H(S,e,x)dx < .

Then, Z is sample continuous and weak*—limn+wL(Sn) = L(Z).

Let now {Xi};rl be a sequence of 1.i.d. random variables such that

Ex; = 0, Exi = 1 and E|x1]2+6
. n .

xllloglx1||1/2+5aL2(Q,P) would be enoupgh). Define S, D%y and

—1/2[

s

< » for some § >0 (in fact,

g (w,t) = n [ht](w) + (nt—[nt])x[nt]+1(w)

for every natural number n, we@ and te[0,1] ([-] denotes the func-
tion "greatest integer smaller than or equal to'). gn(w) is a C[O,ij—

valued random variable. Since x is square integrable, the invariance

1
principle asserts that the distribution of gn(m) converges weakly

(weak®) to the distribution of Brownian motion. We will deduce this
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fact from Theorenm 2.

Set
0 if  O<nt<k-1
X ~ ~1/2 )
nk w,t) = n (t—(k—l)/n)xk(w) if  k-l<nt<k
nﬁi/zxk(w) if  k<nt<n.
Then, En = zﬁzlxnk. In order to apply Theorem 2 we must discard the
trajectories of the processes Xnk which are too steep i.e., we must
truncate X, . Define
. 1/(2+8)
x (w)  if [z ()| <k
yk(w) =
0 otherwise,
. T o B .
Ynk< as Xnk with Xy replaced by Vies and gn Zk=1“nk' It is easy

to see that the sequences {L(gn)} and {L(EA—EEA)} are weak®-conver-
gence equivalent, in fact, that l‘gn(m) - gilw) + Egﬁ!]w >0 a.s. In
particular, the finite dimensional distributions of gﬁ—?g% conversge
to the ones of Brownian motion and so, in order to obtain the invarian-
ce principle for {xi} we only need to check hvpothesis (ii) in Theo-
~EY_ }.7f [os] = [nt] = k, then

1/2
n

rem 2 for the triangular array {Ynk

Eé(s)—ié(t) = |s—t|yk,

and if [ns] = k-1 and [nt] = k-r-1, r # 0, then

n—1/2[

55(8)—€%(t) = (k~r—nt)yk_P+yk_P_l+'--+(ns—k+1)yk}.

Therefore,

(11) 'E(E;(s)-Eaﬁ(s)-Eﬁ(t)+£€%(t))2 < 2]s—t|1/2-

It is equally easy to verify that

§/2(2+8)
(12) |1y, ()Y, (03 | [ < st | 87202480,

With (11) and (12), the second hypothesis of Theorem 2 is checked and
therefore, the law of gn converges weakly to the law of Brownian mo-
tion as nwe,

Remark. In fact, Theorem ? holds under the weaker (and best possible)

nypothesis of sout/?

(S,e,x)dx < o (Giné (to appear)). Then, a simple
truncaticn gives the final result of Jain and “arcus mentioned in Sec-
tion 1. But this does mot seem to imply the invariance principle under

the weakest conditions either (only with xlIloglxlﬂl/u+5eL7(Q,P)).
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