Skip to main content

Selected special topics

  • Chapter
  • First Online:
  • 656 Accesses

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 257))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for §31

  1. E. Asplund and R. T. Rockafellar, Gradients of convex functions. Trans. Amer. Math. Soc. 139(1969), 443–467.

    Article  MathSciNet  MATH  Google Scholar 

  2. E. W. Cheney, Introduction to Approximation Theory. McGraw Hill, New York, 1966.

    MATH  Google Scholar 

  3. M. Day, Reflexive Banach spaces not isomorphic to uniformly convex spaces. Bull. Amer. Math. Soc. 47(1941), 313–317.

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Dunford and J. Schwartz, Linear Operators, Part I. Interscience, New York, 1958.

    MATH  Google Scholar 

  5. K. Fan and I. Glicksberg, Some geometric properties of the spheres in a normed linear space. Duke Math. J. 25(1958), 553–568.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Holmes, Approximating best approximations. Nieuw Arch. voor Wisk. 14(1966), 106–113.

    MathSciNet  MATH  Google Scholar 

  7. _____ and B. Kripke, Smoothness of approximation, Mich. Math. J. 15(1968), 225–248.

    Article  MathSciNet  MATH  Google Scholar 

  8. C. McCarthy, cp. Israel Math. J. 5(1967), 249–271.

    Article  Google Scholar 

  9. E. McShane, Linear functionals on certain Banach spaces. Proc. Amer. Math. Soc. 1(1950), 402–408.

    Article  MathSciNet  MATH  Google Scholar 

  10. C. Morawetz, Two Lp inequalities. Bull. Amer. Math. Soc. 75(1969), 1299–1302.

    Article  MathSciNet  MATH  Google Scholar 

  11. V. Sholohovich, Unstable extremal problems and geometric properties of Banach spaces. Soviet Math. Dokl. 11(1970), 1470–1472.

    Google Scholar 

References for §32

  1. T. Ando, Contractive projections in Lp spaces. Pac. J. Math. 17(1966), 391–405.

    Article  MATH  Google Scholar 

  2. I. Daugavet, A property of completely continuous operators in the space C. Uspehi Mat. Nauk 18(1963), 157–158.(Russian)

    MathSciNet  MATH  Google Scholar 

  3. M. Day, Normed Linear Spaces. Academic Press, New York, 1962.

    Book  MATH  Google Scholar 

  4. J. Dugundji, Topology. Allyn and Bacon, Boston, 1966.

    MATH  Google Scholar 

  5. C. Foias and I. Singer, Points of diffusion of linear operators, Math. Zeit. 87(1965), 434–450.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Garkavi, Approximative properties of subspaces with finite defect in the space of continuous functions. Sov. Math. 5(1964), 440–443.

    MathSciNet  MATH  Google Scholar 

  7. R. Holmes, Approximating best approximations. Nieuw Arch. voor Wisk. 14(1966), 106–113.

    MathSciNet  MATH  Google Scholar 

  8. _____, On the continuity of best approximation operators. Proc. Symp. Inf. Dim. Topology. Annals of Math Study #69, Princeton Univ. Press, to appear.

    Google Scholar 

  9. _____ and B. Kripke, Smoothness of approximation. Mich. Math. J. 15(1968), 225–248.

    Article  MathSciNet  MATH  Google Scholar 

  10. _____, Best approximation by compact operators. Ind. Univ. Math. J., to appear.

    Google Scholar 

  11. V. Klee, Two renorming constructions related to a question of Anselone. Studia Math. 23(1969), 231–242.

    MathSciNet  MATH  Google Scholar 

  12. B. Kripke and T. Rivlin, Approximation in the metric of L1(X,μ). Trans. Amer. Math. Soc. 119(1965), 101–122.

    MathSciNet  MATH  Google Scholar 

  13. J. Lambert, The weak sequential continuity of the metric projection in Lp spaces. Dissertation, Purdue Univ., 1970.

    Google Scholar 

  14. A. Lazar, P. Morris, and D. Wulbert, Continuous selections for metric projections. J. Func. Anal. 3(1969), 139–216.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Lindenstrauss, On nonlinear projections in Banach spaces. Mich. Math. J. 11(1964), 263–287.

    Article  MathSciNet  MATH  Google Scholar 

  16. _____, Extension of compact operators. Mem. Amer. Math. Soc. #48, 1964.

    Google Scholar 

  17. E. Michael, Selected selection theorems. Amer. Math. Monthly 63(1956), 233–238.

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Moroney, The Haar problem in L1. Proc. Amer. Math. Soc. 12(1961), 793–795.

    MathSciNet  MATH  Google Scholar 

  19. F. Murray, On complementary manifolds and projections in Lp and ϕp. Trans. Amer. Math. Soc. 41(1937), 138–152.

    MathSciNet  Google Scholar 

  20. T. Newman and P. Odell, On the concept of a p-q generalized inverse of a matrix. SIAM J. Appl. Math. 17(1969), 520–525.

    Article  MathSciNet  MATH  Google Scholar 

  21. E. Oshman, On continuity of metric projections onto some classes of subspaces in a Banach space, Sov. Math. 11(1970), 1521–1523.

    MATH  Google Scholar 

  22. I. Singer, Best Approximation in Normed Linear Subspaces by Elements of Linear Subspaces. Springer, Berlin-Heidelberg, 1970.

    Book  MATH  Google Scholar 

References for §33

  1. P. Belobrov, On the problem of the Chebyshev center of a set. Izv. Vys. Ucheb. Zaved. (1964), 3–9. (Russian)

    Google Scholar 

  2. L. Blumenthal and G. Wahlin, On the spherical surface of smallest radius enclosing a bounded subset of n-dimensional euclidean space. Bull. Amer. Math. Soc. 47 (1941), 771–777.

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Danzer, B. Grünbaum, and V. Klee, Helly’s theorem and its relatives. Convexity, Proc. Symp. Pure Math. 7 (1963), Amer. Math. Soc.; 101–180.

    Article  MATH  Google Scholar 

  4. M. Day, Normed Linear Spaces. Academic Press, New York, 1962.

    Book  MATH  Google Scholar 

  5. D. Dean, Direct factors of (AL)-spaces. Bull. Amer. Math. Soc 71 (1965), 368–371.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Garkavi, The best possible net and the best possible cross-section of a set in a normed space. Izv. Akad. Nauk SSSR 26 (1962), 87–106. (Russian) (Translated in Amer. Math. Soc. Trans., Ser. 2, 39 (1964).)

    MathSciNet  Google Scholar 

  7. M. Golomb and H. Weinberger, Optimal approximation and error bounds. On Numerical Approximation, R. Langer, Ed., Univ. of Wisconsin Press, Madison, 1959; 117–190.

    Google Scholar 

  8. A. Grothendieck, Sur les applications linéaires faiblement compactes d’espaces du type C(K). Can. J. Math. 5 (1953), 129–173.

    Article  MathSciNet  MATH  Google Scholar 

  9. N. Gurarii and Ju. Sozonov, Normed spaces in which the unit sphere has no bias. Math. Zametki 7 (1970), 307–310. (Russian) (Translated in Math. Notes 7 (1970), 187–189.)

    MathSciNet  MATH  Google Scholar 

  10. R. James and S. Swaminathan, Normed linear spaces that are uniformly convex in every direction. Preprint.

    Google Scholar 

  11. M. Kadets and V. Zamyatin, Chebyshev centers in the space C[a,b]. Teo. Funk., Funkcion. Anal. Pril. 7 (1968), 20–26. (Russian).

    MATH  Google Scholar 

  12. J. Kelley, Banach spaces with the extension property. Trans. Amer. Math. Soc. 72 (1952), 323–326.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Laurent and P. Dinh-Tuan, Global approximation of a compact set by elements of a convex set in a normed space. Num. Math. 15 (1970), 137–150.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Meinguet, Optimal approximation and interpolation in normed spaces. Numerical Approximation to Functions and Data, J. Hayes, Ed., Athlone Press, London, 1970; 143–157.

    Google Scholar 

  15. L. Nachbin, A theorem of the Hahn-Banach type for linear transformations. Trans. Amer. Math. Soc. 68 (1950), 28–46.

    Article  MathSciNet  MATH  Google Scholar 

  16. N. Routledge, A result in Hilbert space. Quart. J. Math. 3 (1952), 12–18.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Stone, Boundedness properties in function-lattices. Can. J. Math. 1 (1949), 176–186.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Valadier, Sous-différentiels d’une borne supérieure et d’une somme continue de fonctions convexes. C. R. Acad. Sci. Paris 268 (1969), A39–A42.

    MathSciNet  MATH  Google Scholar 

References for §34

  1. V. Ivanov, On linear problems which are not well posed. Soviet Math. Dokl. 3 (1962), 981–983.

    Google Scholar 

  2. M. Lavrentiev, Some Improperly Posed Problems of Mathematical Physics. Springer-Verlag, New York, 1967.

    Book  MATH  Google Scholar 

  3. V. Tanana, Incorrectly posed problems and the geometry of Banach spaces. Soviet Math. Dokl. 11 (1970), 864–867.

    MATH  Google Scholar 

  4. A. Tikhonov, On the stability of inverse problems. Dokl. Akad. Nauk SSSR 39 (1944), 195–198. (Russian)

    MathSciNet  Google Scholar 

References for §35

  1. A. Ben-Israel, On iterative methods for solving nonlinear least squares problems over convex sets. Israel Math. J. 5 (1967), 211–224.

    Article  MathSciNet  MATH  Google Scholar 

  2. —, On Newton’s method in nonlinear programming, p. 339–352 in Princeton Symposium on Mathematical Programming (H. Kuhn, Ed.), Princeton Univ. Press, Princeton, 1970.

    Google Scholar 

  3. —, and A. Charnes, Contributions to the theory of generalized inverses. J. Soc. Ind. Appl. Math. 11 (1963), 667–699.

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Boullion and P. Odell, Ed’s., Symposium on Theory and Application of Generalized Inverses of Matrices. Texas Tech. College, Lubbock, 1968.

    Google Scholar 

  5. —, Generalized Inverse Matrices. Wiley-Interscience, New York, 1971.

    MATH  Google Scholar 

  6. H. Decell, An application of the Cayley-Hamilton Theorem to generalized matrix inversion. SIAM Rev. 7 (1965), 526–528.

    Article  MathSciNet  MATH  Google Scholar 

  7. I. Erdelyi and A. Ben-Israel, Extremal solutions of linear equations and generalized inversion between Hilbert spaces. J. Math. Anal. Appl., to appear.

    Google Scholar 

  8. R. Fletcher, Generalized inverses for nonlinear equations and optimization. p. 75–86 in Numerical Methods for Nonlinear Algebraic Equations (P. Rabinowitz, Ed.), Gordon and Breach, New York, 1970.

    Google Scholar 

  9. T. Greville, Some applications of the pseudoinverse of a matrix. SIAM Rev. 2 (1960), 15–22.

    Article  MathSciNet  MATH  Google Scholar 

  10. N. Minimide and K. Nakamura, A restricted pseudoinverse and its application to constrained minima. SIAM J. App. Math. 19 (1970), 167–177.

    Article  MathSciNet  MATH  Google Scholar 

  11. W. Petryshyn, On generalized inverses and on the uniform convergence of (I-βK)n with application to iterative methods. J. Math. Anal. Appl. 18 (1967), 417–439.

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Price, The matrix pseudoinverse and minimal variance estimates. SIAM Rev. 6 (1964), 115–120.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Showalter, Representation and computation of the pseudoinverse. Proc. Amer. Math. Soc. 18 (1967), 584–586.

    Article  MathSciNet  MATH  Google Scholar 

  14. — and A. Ben-Israel, Representation and computation of the generalized inverse of a bounded linear operator between Hilbert spaces. Appl. Math. Report No. 69–12, Northwestern Univ., 1969.

    Google Scholar 

  15. S. Zlobec, Explicit computation of the Moore-Penrose generalized inverse. SIAM Rev. 12 (1970), 132–134.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Springer-Verlag

About this chapter

Cite this chapter

Holmes, R.B. (1972). Selected special topics. In: A Course on Optimization and Best Approximation. Lecture Notes in Mathematics, vol 257. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0059455

Download citation

  • DOI: https://doi.org/10.1007/BFb0059455

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-05764-2

  • Online ISBN: 978-3-540-37182-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics