Skip to main content

Cryptographic permutations based on BOOT decompositions of walsh matrices

  • 6 Specific Methods and Applications
  • Conference paper
  • First Online:
Computer Aided Systems Theory — EUROCAST'97 (EUROCAST 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1333))

Included in the following conference series:

  • 111 Accesses

Abstract

To guarantee security and privacy in data transmission and archival applications, adequate efficient bulk encryption techniques are necessary which are able to cope with the vast amounts of data involved. Experience has shown that block-oriented symmetric product ciphers constitute an adequate design paradigm for resolving this task, since they can offer a very high level of security as well as very high encryption rates.

In this contribution we introduce a new product cipher which encrypts blocks of plain-text by repeated intertwined application of substitution and permutation operations. While almost all of the current product ciphers use fixed (predefined) permutation operations, our approach involves parameterizable (keyed) permutations induced by BOOT decompositions of Walsh matrices. By combining these highly unstable dynamics with an adaption of a very fast shift register based pseudo-random number generator we obtain a new class of computationally secure product ciphers which are firmly grounded on systems theoretic concepts, offering many features that should make them superior to contemporary bulk encryption systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Biham and A. Shamir. Differential Cryptanalysis of DES-like Cryptosystems. Journal of Cryptology, 4(1):3–72, 1991.

    Article  Google Scholar 

  2. W. Diffie and M.E. Hellman. New directions in cryptography. IEEE Transactions on Information Theory, 22:644–654, 1976.

    Article  Google Scholar 

  3. T. ElGamal. A public-key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory, 31:469–472, 1985.

    Article  Google Scholar 

  4. D. Schütt et. al. Boot algebras. Technical report, Int. Computer-Science Institute, June 1992. TR-92-039.

    Google Scholar 

  5. E. Brickell et. al. SKIPJACK Review Interim Report: The SKIPJACK Algorithm. posted on sci.crypt; available from NIST, July 1993.

    Google Scholar 

  6. D. Gollmann. Kaskadenschaltung taktgesteuerter Schieberegister als Pseudozufallszahlengeneratoren. VWGÖ, Vienna, 1986. (in German).

    Google Scholar 

  7. A. Grube. Moderne Erzeugung von Zufallszahlen. Toeche-Mittler, Darmstadt, 1975.

    Google Scholar 

  8. H. Harmuth. Transmission of Information by Orthogonal Functions. Springer Verlag, Berlin, Heidelberg, New York, 1972.

    Google Scholar 

  9. L.J. Hoffman. Clipping Clipper. Communications of the ACM, 36(9):15–17, September 1993.

    Article  Google Scholar 

  10. D.E. Knuth. The art of computer programming, volume 2. Addison Wesley, Reading, Mass., 1981.

    Google Scholar 

  11. X. Lai and J. Massey. A proposal for a new block encryption standard. EUROCRYPT 90, pages 389–404, 1990.

    Google Scholar 

  12. X. Lai, J.L. Massey, and S. Murphy. Markov ciphers and differential cryptanalysis. In Lecture Notes in Computer Science No 547: Advances in Cryptology — EUROCRYPT'91, pages 17–38, Berlin, Heidelberg, New York, 1991. Springer Verlag.

    Google Scholar 

  13. National Technical Information Service. Data Encryption Standard. Technical report, National Bureau of Standards, Federal Information Processing Standards Publication, Springfield VA, 1977. FIPS PUB 46.

    Google Scholar 

  14. F. Pichler. Walsh Functions-Introduction to the Theory. In J. W. R. Griffiths, P. L. Stocklin, and C. van Schooneveld, editors, Signal Processing, pages 23–41. Academic Press, London, 1973.

    Google Scholar 

  15. F. Pichler. Mathematische Systemstheorie. De Gruyter, 1975.

    Google Scholar 

  16. F. Pichler and J. Scharinger. Ciphering by bernoulli-shifts in finite abelian groups. In H.K. Kaiser, W.B. Müller, and G.F. Pilz, editors, Contributions to General Algebra 9, pages 249–256, 1995.

    Google Scholar 

  17. F. Pichler and J. Scharinger. Finite dimensional generalized baker dynamical systems for cryptographic applications. Lecture Notes in Computer Science, 1030:465–476, 1995.

    Google Scholar 

  18. J. Reeds. “Cracking” a Random Number Generator. In Cipher A. Deavours, David Kahn, Louis Kruh, Greg Mellen, and Brian Winkel, editors, CRYPTOLOGY Yesterday, Today, and Tomorrow, pages 509–515. Artech House, Norwood MA, 1987.

    Google Scholar 

  19. R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining signatures and public-key cryptosystems. Communications of the ACM, 21(2):120–126. 1978.

    Article  Google Scholar 

  20. J. Scharinger. Experimentelle Harmonische Analyse von Bäcker-dynamischen 2D Systemen und ihre Anwendung in der Kryptographie. PhD thesis, Institute of Systems Sciences, JKU, 4040-Linz, Austria, September 1994. (in German).

    Google Scholar 

  21. J. Scharinger. Fast encryption of image data using chaotic kolmogoroff-flows. In Storage and Retrieval for Image and Video Databases V, SPIE Proceedings Volume 3022, pages 278–289, February 1997.

    Google Scholar 

  22. J. Schaxinger and F. Pichler. Bernoulli Chiffren. Elektrotechnik und Informationstechnik, 11, 1994. (in German).

    Google Scholar 

  23. J. Scharinger and F. Pichler. Efficient image encryption based on chaotic maps. In A. Pinz, editor, Pattern Recognition 1996, Proceedings of the 20th Workshop of the AAPR, pages 159–170, Wien, München, 1996. R. Oldenbourg.

    Google Scholar 

  24. J. Scharinger, F. Pichler, W. Kozek, and H.G. Feichtinger. Chaotic kolmogorov flows for image encryption. In R. Trappl, editor, Cybernetics and Systems '96, volume 1, pages 111–116. Austrian Society for Cybernetic Studies, 1996.

    Google Scholar 

  25. F. Schipp, W.R. Wade, P. Simon, and J. Pal. Walsh Series: an introduction to dyadic harmonic analysis. Adam Hilger, Bristol, New York, 1990.

    Google Scholar 

  26. B. Schneier. Applied Cryptograpy, Protocols, Algorithms and Source Code in C. John Wiley and Sons, New York, 1993.

    Google Scholar 

  27. J.G. Simmons. Contemporary Cryptography. IEEE Press, 1991.

    Google Scholar 

  28. J. L. Walsh. A closed set of orthogonal functions. Americal Journal of Mathematics, 45:5–24, 1923.

    Google Scholar 

  29. R. W. Zeek and A. E. Showalter, editors. Applications of Walsh Functions, Washington, D. C., March 1972. National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22151.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Franz Pichler Roberto Moreno-Díaz

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schütt, D., Pichler, F., Scharinger, J. (1997). Cryptographic permutations based on BOOT decompositions of walsh matrices. In: Pichler, F., Moreno-Díaz, R. (eds) Computer Aided Systems Theory — EUROCAST'97. EUROCAST 1997. Lecture Notes in Computer Science, vol 1333. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0025077

Download citation

  • DOI: https://doi.org/10.1007/BFb0025077

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63811-7

  • Online ISBN: 978-3-540-69651-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics