Skip to main content
Log in

Functional specialization of hemispheres in matching current and preceding stimuli

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Classification of visual patterns, a differentiating sign of which is the position of the longer axis of an oval and the principal part of the image, was studied. Stimuli were presented at random to the left (LVF) or right (RVF) visual fields in two situations:same (preceding imageS 1 was of the same form and presented to the same visual field as the current imageS 2) anddifferent (S 1 differed fromS 2 by both form and location). Classification ofdifferent images was less effective compared with that ofsame images during stimulation of LVF and showed no dependence on the preceding image during stimulation of RVF. The matching of event-related potentials (ERP) in response toS 2 and differential curvesS 2S 1 revealed the processes related to accessing the information on the preceding stimulus and processing of the current stimulus, which simultaneously occur during the initial 50 ms in both hemispheres and in the 160–180 ms interval in the right hemisphere. Both processes were more expressed during stimulation of the contralateral visual field. In the 190–310 ms interval, discrimination of thesame anddifferent images was determined by processing of information about the current stimulus on the basis of the results of the preceding stage of analysis. This process was more expressed in the occipital, parietal and temporoparietooccipital regions of the right hemisphere independently of the stimulated visual field. The involvement of frontal regions at this stage of information processing was observed only at stimulation of RVF. The dependence of differences of ERP to thesame anddifferent images on the stimulated visual field was revealed for the 320–500-ms interval (N 400 and late positive complex) in the occipital regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nelson, C. and Collins, P., Event-related Potential and Looking-Time Analysis of Infants’ Response to Familiar and Novel Events: Implications for Visual Memory,Dev. Physiol., 1991, vol. 27, no. 1, p. 50.

    Google Scholar 

  2. Hamberger, M. and Friedman, D., Event-related Potential Correlates of Repetition Priming and Stimulus Classification in Young, Middle-aged, and Older Adults,J. Gerontol., 1992, vol. 47, no. 6, p. 395.

    Google Scholar 

  3. Beteleva, T.G., Formation of the Traces of Visual Information. Analysis of Evoked Potentials,Fiziol. Chel., 1996, vol. 22, no. 3, p. 45.

    CAS  Google Scholar 

  4. Posner, M., Bois, S., Eichelman, W., and Taylor, R., Retention of Visual and Name Codes of Single Letters,J. Exp. Psychol., 1969, vol. 79, no. 1 (part 2), p. 45.

    Google Scholar 

  5. Bogomolova, I.V. and Farber, D.A., Electrophysiological Analysis of Visual Perceptive Memory. I. The Influence of Time Inverval between Discriminated Letters on the Parameters of ERP,Fiziol. Chel., 1995, vol. 21, no. 4, p. 13.

    CAS  Google Scholar 

  6. Bogomolova, I.V. and Farber, D.A., Electrophysiological Analysis of Visual Perceptive Memory. II. Reflection of the Mode of Recognition by the Model in Parameters ofP 3 Wave,Fiziol. Chel., 1996, vol. 22, no. 1, p. 40.

    CAS  Google Scholar 

  7. Parks, Th., Kroll, N., Salzberg, P., and Parkinson, S., Persistence of Visual Memory as Indicated by Decision Time in a Matching Task,J. Exp. Psychol., 1972, vol. 92, no. 3, p. 437.

    Article  PubMed  CAS  Google Scholar 

  8. Baddley, A.,Working Memory, Oxford Psychology Series, no. 11, Oxford: Clarendon Press, 1987, p. 289.

    Google Scholar 

  9. Fabiani, M., Karis, D., and Donchin, E., P300 and Recall in an Incidental Memory Paradigm,Psychophysiology, 1986, v. 23, no. 3, p. 298.

    Article  PubMed  CAS  Google Scholar 

  10. Paller, K., Kutas, M., and Mayes, A., Neural Correlates of Encoding in an Incidental Learning Paradigm,Electroencephalogr. Clin. Neurophysiol., 1987, vol. 67, no. 4, p. 360.

    PubMed  CAS  Google Scholar 

  11. Noldy, N., Stelmack, R., and Campbell, K., Event-related Potentials and Recognition Memory for Pictures and Words: the Effects of Intentional and Incidental Learning,Psychophysiology, 1990, vol. 27, no. 4, p. 417.

    Article  PubMed  CAS  Google Scholar 

  12. Van Petten, C. and Senkfor, A., Memory for Words and Novel Visual Patterns: Repetition, Recognition, and Encoding Effects in the Event-related Brain Potential,Psychophysiology, 1996, vol. 33, no. 5, p. 491.

    Article  PubMed  Google Scholar 

  13. Schacter D., Implicit Memory: History and Current Status,J. Exp. Psychol. Learn., Mem., and Cognit., 1987, vol. 13, no. 3, p. 501.

    Article  Google Scholar 

  14. Schacter D., Understanding Implicit Memory: a Cognitive Neuroscience Approach,Am. Psychol., 1992, vol. 47, p. 559.

    Article  PubMed  CAS  Google Scholar 

  15. Marsolek, Ch., and Kosslyn, S., Form-Specific Visual Priming in the Right Hemisphere,J. Exp. Psychol. Learn, Mem., and Cognit., 1992, vol. 18, no. 3, p. 492.

    Article  CAS  Google Scholar 

  16. Koivisto, M., Form-specific Priming and Functional Brain Asymmetries in Perceptual Identification,Cortex, 1996, vol. 32, no. 3, p. 527.

    PubMed  CAS  Google Scholar 

  17. Schacter D., Perceptual Representation Systems and Implicit Memory: towards a Resolution of the Multiple Memory System Debate,Ann. NY Acad. Sci, 1990, vol. 608, p. 543.

    Article  PubMed  CAS  Google Scholar 

  18. Schacter D., Implicit Memory: a Selective Review,Ann. Rev. Neurosci., 1993, vol. 16, p. 159.

    Article  PubMed  CAS  Google Scholar 

  19. Tulving, E. and Schacter, D., Priming and Human Memory Systems,Science, 1990, vol. 247, p. 301.

    Article  PubMed  CAS  Google Scholar 

  20. Friedman, D., Cognitive Event-related Potential Components during Continuous Recognition Memory for Pictures,Psychophysiology, 1990, vol. 27, no. 2, p. 136.

    Article  PubMed  CAS  Google Scholar 

  21. Munte, T., Brack, M., Grootheer, O.,et al., Event-related Brain Potentials to Unfamiliar Faces in Explicit and Implicit Memory Tasks,Neurosci. Res., 1997, vol. 28, no. 3, p. 223.

    Article  PubMed  CAS  Google Scholar 

  22. Zhang, X., Begleiter, H., Porjesz, B., and Litke, A., Visual Object Priming Differs from Word Priming. ERP Study,Electroencephalogr. Clin. Neurophysiol., 1997, vol. 102, no. 3, p. 200.

    PubMed  CAS  Google Scholar 

  23. Beteleva, T.G., Age-related Peculiarities of Incidental Perception of Visual Stimuli,Fiziol. Chel., 1996, vol. 22, no. 5, p. 75.

    CAS  Google Scholar 

  24. Posner, M. and Mitchell, R., Chronometric Analysis of Classification,Psychol. Rev., 1967, vol. 74, no. 5, p. 392.

    Article  PubMed  CAS  Google Scholar 

  25. Seamon, J., Brody, N., and Kauft, D., Affective Discrimination of Stimuli That Are Not Recognized: Effect of Shadowing, Masking and Cerebral Laterality,J. Exp. Psychol. Learn., Mem., Cognit., 1983, vol. 9, no. 3, p. 544.

    Article  CAS  Google Scholar 

  26. Magnani, G., Mazzuah, A., and Parma, M., Interhemispheric Differences in Same Versus Different Judgment upon Presentation of Complex Visual Stimuli,Neurophysiology, 1984, vol. 22, no. 4, p. 527.

    CAS  Google Scholar 

  27. Begleiter, H., Porjesz, B., and Wang, W., A Neurophysiologic Correlate of Visual Short-term Memory in Humans,Electroencephalogr. Clin. Neurophysiol., 1993, vol. 87, p. 46.

    Article  PubMed  CAS  Google Scholar 

  28. Hertz, Sh., Porjesz, B., Begleiter, H., and Chorlian, D., Event-related Potentials to Faces: the Effect of Priming and Recognition,Electroencephalogr. Clin. Neurophysiol., 1994, vol. 92, no. 4, p. 342.

    Article  PubMed  CAS  Google Scholar 

  29. Friedman, D., Sutton, S., Putnam, L.,et al., ERP Components in Picture Matching in Children and Adults,Psychophysiology, 1988, vol. 25, no. 5, p. 570.

    Article  PubMed  CAS  Google Scholar 

  30. Stuss, D., Sarazin, F., Leech, E., and Picton, T., Event-related Potentials during Naming and Mental Rotation,Electroencephalogr. Clin. Neurophysiol., 1983, vol. 56, no. 2, p. 133.

    PubMed  CAS  Google Scholar 

  31. Neville, H., Electroencephalographic Testing of Cerebral Specialization in Normal and Congenitally Deaf Children: a Preliminary Report, inLanguage Development and Neurological Theory, Segalowitz, S. and Gruber F., Eds., New York: Academic Press, 1977, p. 121.

    Google Scholar 

  32. Beteleva, T.G., Changes in the Event-related Potentials during Image Classification,Fiziol. Chel., 1998, vol. 24, no. 4, p. 64.

    CAS  Google Scholar 

  33. Farber, D.A. and Beteleva, T.G., Regional and Hemispheric Specialization in Visual Recognition,Fiziol. Chel., 1999, vol. 25, no. 1, p. 15.

    CAS  Google Scholar 

  34. Chao, L., Nielsen-Bohlman, L., and Knight, R., Auditory Event-related Potentials Dissociate Early and Late Memory Processed,Electroencephalogr. Clin. Neurophysiol., 1995, vol. 96, no. 2, p. 157.

    PubMed  CAS  Google Scholar 

  35. Nevskaya, A.A., and Leushina, L.I.,Asimmetriya polusharii i opoznavanie zritel’nych obrazov (Hemispheric Asymmetry and Recognition of Visual Patterns), Leningrad: Nauka, 1990.

    Google Scholar 

  36. Luriya, A.R.,Osnovy neiropsikhologii (The Principles of Neuropsychology), Moscow: Mosk. Gos. Univ., 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beteleva, T.G. Functional specialization of hemispheres in matching current and preceding stimuli. Hum Physiol 26, 265–274 (2000). https://doi.org/10.1007/BF02760186

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02760186

Keywords

Navigation