Skip to main content
Log in

Mitochondrial DNA alterations in human tumors

Alteraciones en el ADN mitocondrial de tumores humanos

  • Revisiones
  • Published:
Revista de Oncología Aims and scope Submit manuscript

Abstract

Mitochondrial DNA (mtDNA) is a circular molecule containing 27 genes involved in mitochondrial biology and the mitochondrial energy-generating pathway, oxidative phosphorylation (OXPHOS). Alterations in mtDNA have been reported to accumulate with age and some mtDNA mutations are known to be responsible for specific degenerative diseases. Recently, somatic mtDNA variations have been described in human tumors, although their functional implications in tumorigenesis have so far not been elucidated. Given the relevance of mtDNA alterations in tumor progression, their clonal nature may allow their use as markers for tumor detection. The goal of the present review is to provide an overview of mtDNA alterations in tumors and the potential utility of mtDNA in the management of cancer patients.

Resumen

El ADN mitocondrial (ADNmt) es una molécula circular que contiene 27 genes implicados en la biología mitocondrial y en los procesos celulares generadores de energía de la oxidación fosforilativa (OXPHOS). Se ha detectado una acumulación de alteraciones en el ADNmt durante el envejecimiento y, además, mutaciones en el ADNmt son la causa de ciertas enfermedades degenerativas. Durante los últimos años se ha observado la presencia de variaciones somáticas en el ADNmt en tumores humanos, aunque todavía se desconocen sus posibles implicaciones en el desarrollo tumoral. Independientemente de la importancia de las alteraciones en el ADNmt durante el desarrollo tumoral, la naturaleza clonal de estas anormalidades las convierte en marcadores tumorales, potencialmente útiles en la detección precoz y en el seguimiento del enfermo de cáncer. La presente revisión pretende realizar una síntesis de la información acumulada hasta la fecha acerca de las alteraciones del ADNmt en tumores humanos y su posible uso en el manejo del enfermo de cáncer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson S, Bankier AT, Barrell BG, et al. Sequence and organization of the human mitochondrial genome. Nature 1981;290:457–65.

    Article  CAS  PubMed  Google Scholar 

  2. Andersson JO, Doolittle WF, Nesbo CL. Genomics. Are there bugs in our genome? Science 2001;292:5523.

    Google Scholar 

  3. Cavalier L, Jazin E, Jalonen P. MtDNA substitution rate and segregation of heteroplasmy in coding and noncoding regions. Hum Genet 2000;107:45–50.

    Article  Google Scholar 

  4. Tully LA, Parsons TJ, Steighner RJ, et al. A sensitive denaturing gradient-gel electrophoresis assay reveals a high frequency of heteroplasmy in hypervariable region 1 of the human mtDNA control region. Am J Hum Genet 2000;67:432–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Larsson N-G, Clayton DA. Molecular genetic aspects of human mitochondrial disorders. Ann Rev Genet 1995;29:151–78.

    Article  CAS  PubMed  Google Scholar 

  6. Wallace DC. Mitochondrial DNA sequence variation in human evolution and disease. Proc Natl Acad Sci USA 1994;91:8739–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wallace DC, Singh G, Lott MT, et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 1988;242:1427–30.

    Article  CAS  PubMed  Google Scholar 

  8. Holt IJ, Harding, AE, Morgan-Hughes JA. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 1988;331:717–9.

    Article  CAS  PubMed  Google Scholar 

  9. Goto Y, Nonaka I, Horai SA. A mutation in the tRNA (Leu) (UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 1990;248:651–3.

    Article  Google Scholar 

  10. Melov S, Shoffner JM, Kaufman DC, Wallace DC. Marked increase in the number and variety of mitochondrial DNA rearrangements in aging human skeletal muscle. Nucleic Acids Res 1995;23:4122–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Smeitink J, van den Heuvel L, DiMauro S. The genetics and pathology of oxidative phosphorylation. Nat Rev Genet 2001;2(5):342–52.

    Article  CAS  PubMed  Google Scholar 

  12. Howell N, Chinnery PF, Ghosh SS, et al. Transmission of the human mitochondrial genome. Hum Reprod 2000;15:(Suppl 2):235–45.

    Article  PubMed  Google Scholar 

  13. Polyak K, Li Y, Zhu H, et al. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat Genet 1998;20:291–3.

    Article  CAS  PubMed  Google Scholar 

  14. Fliss MS, Usadel H, Caballero OL, et al. Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science 2000;287:2017–9.

    Article  CAS  PubMed  Google Scholar 

  15. Parrella P, Xiao Y, Fliss M, et al. Detection of mitochondrial DNA mutations in primary breast cancer and fine-needle aspirates. Cancer Res 2001;61:7623–6.

    CAS  PubMed  Google Scholar 

  16. Jones JB, Song JJ, Hempen PM, et al. Detection of mitocondrial DNA mutations in pancreatic cancer offers a «mass»-ive advantage over detection of nuclear DNA mutations. Cancer Res 2001;61(4):1299–304.

    CAS  PubMed  Google Scholar 

  17. Croteau DL, Bohr V. Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells. J Biol Chem 1997;272:25409–12.

    Article  CAS  PubMed  Google Scholar 

  18. Allen JA, Coombs MM. Covalent binding of polycyclic aromatic compounds to mitochondrial and nuclear DNA. Nature 1980;287:244–5.

    Article  CAS  PubMed  Google Scholar 

  19. Backer JM, Weinstein IB. Mitochondrial DNA is a major cellular target for a dihydrodiolepoxide derivative of benzo[a]pyrene. Science 1980;209:297–9.

    Article  CAS  PubMed  Google Scholar 

  20. Kunkel TA, Loeb LA. Fidelity of mammalian DNA polymerases. Science 1981;213:765–7.

    Article  CAS  PubMed  Google Scholar 

  21. Kroemer G, Zamzani N, Susin SA. Mitochondrial control of apoptosis. Immunol Today 1997;18:45–51.

    Article  Google Scholar 

  22. Coller HA, Khrapko K, Bodyak ND, et al. High frequency of homoplasmic mitochondrial DNA mutations in human tumors can be explained without selection. Nat Genet 2001;28:147–50.

    Article  CAS  PubMed  Google Scholar 

  23. Sánchez-Céspedes M, Parrella P, Nomoto S, et al. Identification of a specific mononucleotide repeat as a major target for mitochondrial DNA alterations in human tumors. Cancer Res 2001;61:7015–9.

    PubMed  Google Scholar 

  24. Hauswirth WW, Clayton DA. Length heterogeneity of a conserved displacement-loop sequence in human mitochondrial DNA. Nucleic Acid Res 1985;13:8093–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu B, Clayton DA. A persistent RNA-DNA hybrid is formed during transcription at a phylogenetically conserved mitochondrial DNA sequence. Mol Cell Biol 1995; 15:580–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee DY, Clayton DA. Initiation of mitochondrial DNA replication by transcription and R-loop processing. J Biol Chem 1998;46:30614–21.

    Article  Google Scholar 

  27. Liu VWS, Shi HH, Cheung ANY, et al. High incidence of somatic mitochondrial DNA mutations in human ovarian carcinomas. Cancer Res 2001;61:5998–6001.

    CAS  PubMed  Google Scholar 

  28. Wright JMA. A review and update of oral precancerous lesions. Tex Dent 1998;115:15–9.

    CAS  Google Scholar 

  29. Califano J, van der Riet P, Westra W, et al. Genetic progresion model for head and neck cancer: implications for field cancerization. Cancer Res 1996;56:2488–92.

    Google Scholar 

  30. Ha PK, Tong BC, Westra WH, et al. Mitochondrial C-tract alteration in premalignant lesions of the head and neck: a marker for progression and clonal proliferation. Clin Cancer Res 2002;8:2260–5.

    CAS  PubMed  Google Scholar 

  31. Marchington DR, Hartshorne GM, Barlow D, Poulton J. Homopolymeric tract heteroplasmy in mtDNA from tissues and single oocytes: support for a genetic bottle-neck. Am J Hum Genet 1997;60:408–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Chinnery PF, Thorburn DR, Samuels DC, et al. The inheritance of mitochondrial DNA heteroplasmy: random drift, selection or both? Trends Genet 2000;16:500–5.

    Article  CAS  PubMed  Google Scholar 

  33. Sidransky D. Emerging molecular markers of cancer. Nature Rev 2002;2:210–9.

    CAS  Google Scholar 

  34. Nomoto S, Yamashita K, Koshikawa K, Nakao A, Sidransky D. Mitochondrial D-loop mutations as clonal markers in multicentric hepatocellular carcinoma and plasma. Clin Cancer Res 2002;8:481–7.

    CAS  PubMed  Google Scholar 

  35. Wallace DC, Stugard C, Murdock D, et al. Ancient mtDNA sequences in the human nuclear genome: a potential source of errors in identifying pathogenic mutations. Proc Natl Acad Science (USA) 1997;94:14900–5.

    Article  CAS  Google Scholar 

  36. Sánchez-Céspedes M, Arendht SA, Piantadosi S, et al. Chromosomal alterations in lung adenocarcinoma from smokers and nonsmokers. Cancer Res 2001;61:1309–13.

    PubMed  Google Scholar 

  37. Jerónimo C, Nomoto S, Caballero OL, et al. Mitochondrial mutations in early stage prostate cancer and bodily fluids. Oncogene 2001;20:5195–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Montserrat Sánchez-Céspedes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-Céspedes, M. Mitochondrial DNA alterations in human tumors. Rev Oncol 5, 15–20 (2003). https://doi.org/10.1007/BF02712836

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02712836

Key words

Palabras clave

Navigation