Skip to main content
Log in

The 21-aminosteroid U-74389F increases the number of glial fibrillary acidic protein-expressing astrocytes in the spinal cord of control and wobbler mice

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

1. Wobbler mice suffer an autosomal recessive mutation producing severe motoneuron degeneration and dense astrogliosis, with increased levels of glial fibrillary acidic protein (GFAP) in the spinal cord and brain stem. They have been considered animal models of amyotrophic lateral sclerosis and infantile spinal muscular atrophy.

2. Using Wobbler mice and normal littermates, we investigated the effects of the membrane-active steroid Lazaroid U-74389F on the number of GFAP-expressing astrocytes and glucocorticoid receptors (GR). Lazaroids are inhibitors of oxygen radical-induced lipid peroxidation, and proved beneficial in cases of CNS injury and ischemia.

3. Four days after pellet implantation of U-74389F into Wobbler mice, hyperplasia and hypertophy of GFAP-expressing astrocytes were apparent in the spinal cord ventral and dorsal horn, areas showing already intense astrogliosis in untreated Wobbler mice. In control mice, U-74389F also produced astrocyte hyperplasia and hypertophy in the dorsal horn and hyperplasia in the ventral-lateral funiculi of the cord.

4. Givenin vivo U-74389F did not change GR in spinal cord of Wobbler or control mice, in line with the concept that it is active in membranes but does not bind to GR. Besides, U-74390F did not compete for [3H]dexamethasone binding when addedin vitro.

5. The results suggest that stimulation of proliferation and size of GFAP-expressing astrocytes by U-74389F may be a novel mechanism of action of this compound. The Wobbler mouse may be a valuable animal model for further pharmacological testing of glucocorticoid and nonglucocorticoid steroids in neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aizenman, Y., and de Vellis, J. (1987). Synergistic action of thyroid hormone, insulin and hydrocortisone on astrocyte differentiation.Brain Res. 414301–308.

    Article  PubMed  CAS  Google Scholar 

  • Bracken, M. B., Shepard, M. J., Collins, W. F.,et al. (1990). A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acture spinal cord injury.N. Engl. J. Med. 3221405–1411.

    Article  PubMed  CAS  Google Scholar 

  • Braughler, J. M., and Hall, E. D. (1984). Effects of multi-dose methylprednisolone sodium succinate administration on injured cat spinal cord neurofilament degradation and energy metabolism.J. Neurosurg. 61290–295.

    Article  PubMed  CAS  Google Scholar 

  • Braughler, J. M., Pregenzer, J. F., Chase, R. L., Duncan, L. A., Jacobsen, E. J. and McCall, J. M. (1987). Novel 21-amino steroids as potent inhibitors of iron-dependent lipid peroxidation.J. Biol. Chem. 26210438–10440.

    PubMed  CAS  Google Scholar 

  • Cohen, G., and Author, A. P. (1982).Pathology of Oxygen, Academic Press, New York.

    Google Scholar 

  • Coirini, H., Magariños, A. M., De Nicola, A. F., Rainbow, T. C., and McEwen, B. S. (1985). Further studies of brain aldosterone binding sites employing new mineralocorticoid and glucocorticoid receptor markers in vitro.Brain Res. 361212–216.

    Article  PubMed  CAS  Google Scholar 

  • De Nicola, A. F. (1993). Steroid hormones and neuronal regeneration. InAdvances in Neurology (F. J. Seil, Ed.), Raven Press, New York, Vol. 59, pp. 199–206.

    Google Scholar 

  • De Nicola, A. F., Moses, D. F., Gonzalez, S., and Orti, E. (1989). Adrenocorticoid action in the spinal cord: Some unique molecular properties of glucocorticoid receptors.Cell. Mol. Neurobiol. 9179–192.

    Article  PubMed  Google Scholar 

  • Duchen, L. W., Falconer, D. S., and Stricht, S. J. (1966). Hereditary progressive neurogenic muscular atrophy in the mouse.J. Physiol. (London)18353P-55P.

    Google Scholar 

  • Eddleston, M., and Mucke, L. (1993). Molecular profile of reactive astrocytes—Implications for their role in neurologic disease.Neuroscience 5415–36.

    Article  PubMed  CAS  Google Scholar 

  • Eng, L. F. (1985). Glial fibrillary acidic protein (GFAP): The major protein of glial intermediate filaments in differentiated astrocytes.J. Neuroimmunol. 8203–214.

    Article  PubMed  CAS  Google Scholar 

  • Eng, L. F., and Ghirnikar, R. S. (1994). GFAP and astrogliosis.Brain Pathol. 4229–237.

    PubMed  CAS  Google Scholar 

  • Ferrini, M., Gonzalez, S., Antakly, T., and De Nicola, A. F. (1993). Immunocytochemical localization of glucocorticoid receptors in the spinal cord: Effects of adrenalectomy, glucocorticoid treatment and spinal cord transection.Cell. Mol. Neurobiol. 13387–398.

    Article  PubMed  CAS  Google Scholar 

  • Fleishaker, J. C., Peters, G. R., and Cathcart, K. S. (1993). Evaluation of the pharmacokinetics and tolerability of tirilazad mesylate, a 21-aminosteroid free radical scavenger. I. Single-dose administration.J. Clin. Pharmacol. 33175–181.

    PubMed  CAS  Google Scholar 

  • Gage, F. H., Olejniczak, P., and Armstrong, D. M. (1988). Astrocytes are important for sprouting in the septo-hippocampal circuit.Exp. Neurol. 1022–12.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Segura, L. M., Liquin, S., Parducz, and Naftolin, F. (1994). Gonadal hormone regulation of glial fibrillary acidic protein immunoreactivity and glial ultrastructure in the rat neuroendocrine hypothalamus.Glia 1059–69.

    Article  PubMed  CAS  Google Scholar 

  • Giulian, D., and Corpuz, M. (1993). Microglial secretion products and their impact on the nervous system. InAdvances in Neurology (F. J. Seil, Ed.), Raven Press, New York, Vol. 59, pp. 315–320.

    Google Scholar 

  • Goss, J. R., Finch, C. E., and Morgan, D. G. (1991). Age-related changes in glial fibrillary acidic protein mRNA in the mouse brain.Neurobiol. Aging 12165–170.

    Article  PubMed  CAS  Google Scholar 

  • Hall, E. D. (1987). Beneficial effects of the 21-aminosteroid U-74006F in acute CNS trauma and hypovolemic shock.Acta Anaesth. Belg. 38421–425.

    PubMed  CAS  Google Scholar 

  • Hall, E. D. (1993). Neuroprotective actions of glucocorticoid and nonglucocorticoid steroids in acute neuronal injury.Cell. Mol. Neurobiol. 13415–432.

    Article  PubMed  CAS  Google Scholar 

  • Krieger, C., Perry, T. L., Hanse, S., Mitsumoto, H., and Honore, T. (1992). Excitatory amino acid receptor antagonist in murine motoneurone disease (the Wobbler mouse).Can. J. Neurol. Sci. 19462–465.

    PubMed  CAS  Google Scholar 

  • Kupersmith, M. J., Kaufman, D., Paty, D. W., Ebers, G., McFarland, H., Johnson, K., Reingold, S., and Whitaker, J. (1994). Megadose corticosteroids in multiple sclerosis.Neurology 41–4.

    Google Scholar 

  • Laage, S., Zobel, G., and Jockusch, H. (1988). Astrocyte overgrowth in the brain stem and spinal cord of mice affected by spinal atrophy, Wobbler.Dev. Neurosci. 10190–198.

    PubMed  CAS  Google Scholar 

  • La Mantia, L., Eoli, M., Milanese, C., Salmaggi, A., Dufour, A., and Torri, V. (1994). Double-blind trial of dexamethasone versus methylprednisolone in multiple sclerosis acute relapses.Eur. Neurol. 34199–203.

    PubMed  Google Scholar 

  • Laping, N. J., Nichols, N. R., Day, J. R., and Finch, C. E. (1991). Corticosterone differentially regulates the bilateral response of astrocyte mRNAs in the hippocampus to entorhinal cortex lesions in male rats.Mol. Brain Res. 10291–297.

    Article  PubMed  CAS  Google Scholar 

  • Laping, N. J., Teter, B., Nichols, N. R., Rozovsky, I., and Finch, C. E. (1994). Glial fibrillary acidic protein: Regulation by hormones, cytokines, and growth factors.Brain Pathol. 1259–275.

    Google Scholar 

  • Leetsma, J. E. (1980). Animal model: Motor neuron disease in the wobbler (wr/wr) mouse.Am. J. Pathol. 100811–814.

    Google Scholar 

  • McCall, J. M., Hall, E. D., and Braughler, J. M. (1989). A new class of 21-aminosteroids which are useful for stroke and trauma. InSteroids and Diseases of the Central Nervous System (R. Capildeo, Ed.), John Wiley & Sons, New York, pp. 69–80.

    Google Scholar 

  • McKeon, R. J., Schreiber, R. C., Rudge, J. S., and Silver, J. (1991). Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes.J. Neurosci. 113398–3411.

    PubMed  CAS  Google Scholar 

  • Mitsumoto, H., and Bradley, W. G. (1982). Murine motor neuron disease (the Wobbler Mouse): Degeneration and regeneration of the lower motor neuron.Brain Res. 105811–834.

    Google Scholar 

  • Moses, D. F., Gonzalez, S., McEwen, B. S., and De Nicola, A. F. (1991). Glucocorticoid type II receptors of the spinal cord show lower affinity than hippocampal type II receptors. Binding parameters obtained with different experimental protocols.J. Steroid Biochem. Mol. Biol. 395–12.

    Article  PubMed  CAS  Google Scholar 

  • Muller, H. W., Matthiessen, H. P., Schmalenbach, C., and Schroeder, W. O. (1991). Glial support of CNS neuronal survival, neurite growth and regeneration.Rest. Neurol. Neurosci. 2229–232.

    Google Scholar 

  • Murayama, S., Inoue, K., Kawakami, H., Bouidin, T. W., and Suzuki, K. (1991). A unique pattern of astrocytosis in the primary motor area in amyotrophic lateral sclerosis.Acta Neuropathol. (Berlin)82456–461.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, B. E. P. (1968). Clinical evaluation of urinary cortisol: Determination by competitive protein-binding radioassay.J. Clin. Endocr. Metab. 28343–348.

    Article  PubMed  CAS  Google Scholar 

  • Nichols, N. R., Osterburg, H. H., Masters, J. N., Millar, S. L., and Finch, C. E. (1990). Messenger RNA for glial fibrillary acidic protein is decreased in rat brain following acute and chronic corticosterone treatment.Mol. Brain Res. 71–7.

    Article  PubMed  CAS  Google Scholar 

  • O'Banion, M. K., Young, D. A., and Bohn, M. C. (1994). Corticosterone-responsive mRNAs in primary rat astrocytes.Mol. Brain Res. 2257–68.

    Article  PubMed  Google Scholar 

  • O'Callaghan, J. P., Brinton, R. E., and McEwen, B. S. (1991). Glucocorticoid regulate the synthesis of glial fibrillary acidic protein in intact and adrenalectomized rats but not affect its expression following brain injury.J. Neurochem. 57860–869.

    Article  PubMed  Google Scholar 

  • Olanow, C. W. (1993). A radical hypothesis for neurodegeneration.TINS 16439–444.

    PubMed  CAS  Google Scholar 

  • Orti, E., Coirini, H., and De Nicola, A. F. (1985). Properties and distribution of glucocorticoidbinding sites in cytosol of the spinal cord.Neuroendocrinology 40225–231.

    PubMed  CAS  Google Scholar 

  • Reier, P. J., and Houle, J. D. (1988). The glial scar: Its bearing on axonal elongation and transplantation approaches to CNS repair. InAdvances in Neurology (S. G. Waxman, Ed.), Raven Press, New York, Vol. 59, pp. 87–138.

    Google Scholar 

  • Rexed, B. (1954). A cytoarchitectonic atlas of the spinal cord in the cat.J. Comp. Neurol. 100297–380.

    Article  PubMed  CAS  Google Scholar 

  • Rosen, D. R., Siddique, T., Patterson, D.,et al. (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis.Nature 36259–62.

    Article  PubMed  CAS  Google Scholar 

  • Rosner, W., and Polimeni, S. T. (1978). An exchange assay for the cytoplasmic glucocorticoid receptor in the liver of the rat.Steroids 31427–438.

    Article  PubMed  CAS  Google Scholar 

  • Shea, T. B. (1994). Amyloid precursor protein as a glial-derived growth factor.TINS 17338–339.

    PubMed  CAS  Google Scholar 

  • Wilkin, G. P., Marriot, D. R., and Cholewinski, A. J. (1990). Astrocyte heterogeneity.TINS 1343–46 (1990).

    PubMed  CAS  Google Scholar 

  • Yung, K. K. L., Tang, F., and Vacca-Galloway, L. L. (1992). Changes of neuropeptides in spinal cord and brain stem of Wobbler mouse at different stages of motoneuron disease.Neuroscience 50209–222.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deniselle, M.C.G., Gonzalez, S.L., Piroli, G.G. et al. The 21-aminosteroid U-74389F increases the number of glial fibrillary acidic protein-expressing astrocytes in the spinal cord of control and wobbler mice. Cell Mol Neurobiol 16, 61–72 (1996). https://doi.org/10.1007/BF02578387

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02578387

Key words

Navigation