Skip to main content
Log in

Weight diagrams for lie group representations: A computer implementation of Freudenthal's algorithm in ALGOL and FORTRAN

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Implementations in FORTRAN and ALGOL of the Dynkin and Freudenthal algorithms for computing weight systems and for determining the multiplicities of the weights for irreducible representations of simple Lie algebras are described. Reasonable computing times are found for algebras of rank less than or equal to 8 and for representations of dimension less than 1000.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Bibliography

  1. J.-P. Antoine,Irreducible Representations of the SU(3) Group, Ann. Soc. Sci. Bruxelles 77 (3), 150–162 (1963).

    Google Scholar 

  2. J.-P. Antoine and D. Speiser,Characters of Irreducible Representations of the Simple Groups. I. General Theory, J. Math. Phys. 5, 1226–1234 (1964).

    Article  Google Scholar 

  3. J.-P. Antoine and D. Speiser,Characters of Irreducible Representations of the Simple Groups. II. Application to Classical Groups, J. Math. Phys. 5, 1560–72 (1964).

    Article  Google Scholar 

  4. R. E. Behrends, J. Dreitlein, C. Fronsdal and B. W. Lee,Simple Groups and Strong Interaction Symmetries, Revs. Mod. Phys. 34, 1–40 (1962).

    Article  Google Scholar 

  5. J. G. Belinfante and B. Kolman,An Introduction to Lie Groups and Lie Algebras, with Application. Part III. Computational Methods, 1969. (to be published).

  6. J. G. Belinfante, B. Kolman and H. A. Smith,An Introduction to Lie Groups and Lie Algebras, with Applications, S.I.A.M. Review 8, 11–46 (1966).

    Google Scholar 

  7. J. G. Belinfante, B. Kolman and H. A. Smith,An Introduction to Lie Groups and Lie Algebras, with Applications. II. The Basic Methods and Results of Representation Theory, S.I.A.M. Review 10, 160–195 (1968).

    Google Scholar 

  8. P. Cartier,On H. Weyl's Character Formula, Bull. AMS 67, 228–230 (1961).

    Google Scholar 

  9. J. J. DeSwart,The Octet Model and its Clebsch-Gordan Coefficients, Revs. Mod. Phys. 37, 326 (1965).

    Article  Google Scholar 

  10. E. B. Dynkin,Semisimple Subalgebras of Semisimple Lie Algebras, AMS. Transl. Ser. 2, vol. 6, pp. 111–244 (1957).

    Google Scholar 

  11. E. B. Dynkin,The Maximal Subgroups of the Classical Groups, AMS Transl. Ser. 2, vol. 6. 245–378 (1957). [Supplement:Survey of the Basic Concepts and Facts in the Theory of Linear Representations of Semisimple Lie Algebras].

    Google Scholar 

  12. E. B. Dynkin,The Structure of Semisimple Algebras, AMS Transl. Ser. I. 9, 328–469 (1962).

    Google Scholar 

  13. H. Freudenthal,On the Calculation of the Characters of Semisimple Lie Groups. I [German]. Proc. Kon. Ned. Akad. Wet. A 57, 369–376 (1954).

    Google Scholar 

  14. H. Freudenthal,On the Calculation of the Characters of Semisimple Lie Groups. II. [German]. Proc. Kon. Ned. Akad. Wet. A 57, 487–491 (1954).

    Google Scholar 

  15. H. Freudenthal,On the Calculation of the Characters of Semisimple Lie Groups. III. [German]. Proc. Kon. Ned. Akad. Wet. A 59, 511–514 (1956).

    Google Scholar 

  16. M. Gourdin,Unitary Symmetries and Their Application to High Energy Physics, N. Holland Publ. Co. (1967).

  17. B. Gruber and H. J. Weber,On the Construction of Weight Diagrams for SO(5),Sp(4)and G 2, Proc. Roy. Irish Acad. 66A, 31–40 (1968).

    Google Scholar 

  18. B. Gruber and F. Zaccaria,Clebsch-Gordan Series for the Classical Rank-Two Groups and SU(4), Nuo. Cim. Suppl. 5, 914–936 (1967).

    Google Scholar 

  19. N. Jacobson,Lie Algebras, Interscience, New York (1962).

    Google Scholar 

  20. M. Konuma, K. Shima and M. Wada,Simple Lie Algebras of Rank 3 and Symmetries of Elementary Particles in the Strong Interactions, Prog. Theoret. Phys. Suppl. 28, 1–128 (1963).

    Google Scholar 

  21. B. Kostant,A Formula for the Multiplicity of a Weight, Proc. Natl. Acad. Sci. 44, 588–589 (1958).

    Google Scholar 

  22. B. Kostant,A Formula for the Multiplicity of a Weight, Trans. Ams. 93, 53–73 (1959).

    Google Scholar 

  23. G. Loupias, M. Sirugue and J. C. Tortin,On Simple Lie Groups of Rank 3, Nuo. Cim. 38, 1303–1325 (1965).

    Google Scholar 

  24. A. J. Macfarlane, L. O'Raifeartaigh, and P. S. Rao,Relationship of the Internal and External Multiplicity Structure of Compact Simple Lie Groups, J. Math. Phys. 8, 536–546 (1967).

    Article  Google Scholar 

  25. J. McConnell,Multiplicities in Weight Diagrams, Proc. Roy. Irish Acad. A65, 1–12 (1966).

    Google Scholar 

  26. J. McConnell,Properties of the Exceptional G 2 Lie Group, Proc. Roy. Irish Acad. 66A, 12–92 (1968).

    Google Scholar 

  27. Y. Ne'eman,The Symmetry Approach to Particle Physics, [reprinted in Gell-Mann and Ne'eman, 1964, Eightfold Way, pp. 302–317], Proc. Intern. Conf. Nucl. Structure, 172–187, (1963).

  28. D. Radhakrishnan and T. S. Santhanam,Internal Multiplicity Structure and Clebsch-Gordan Series for the Exceptional Group G(2), J. Math. Phys. 8, 2206–9 (1967).

    Article  Google Scholar 

  29. D. Speiser,Fundamental Representations of Lie Groups, Helv. Phys. Acta 38, 73–97 (1965).

    Google Scholar 

  30. D. R. Speiser and J. Tarski,Possible Schemes for Global Symmetry, J. Math. Phys. 4, 588–612 (1963).

    Article  Google Scholar 

  31. T. A. Springer,Weyl's Character Formula for Algebraic Groups, Inventiones Math. 5, 85–105 (1968).

    Article  Google Scholar 

  32. N. Straumann,On the Clebsch-Gordan Series of Semisimple Lie Algebras, Helv. Phys. Acta 38, 56–64 (1965).

    Google Scholar 

  33. N. Straumann,Branching Rules and Clebsch-Gordan Series of Semi-Simple Lie Algebras, Helv. Phys. Acta 38, 481–498 (1965).

    Google Scholar 

  34. J. Tarski,Partition Function for Certain Simple Lie Algebras, J. Math. Phys. 3, 569–574 (1963).

    Article  Google Scholar 

  35. H. Weyl,Theory of Representations of Continuous Semi-Simple Groups by Linear Transformations. I., Math. Zeit. 23, 271–309 (1925).

    Article  Google Scholar 

  36. H. Weyl,Theory of Representations of Continuous Semi-Simple Groups by Linear Transformations. II., Math. Zeit. 24, 328–376 (1926).

    Article  Google Scholar 

  37. H. Weyl,Theory of Representations of Continuous Semi-Simple Groups by Linear Transformations. III., Math. Zeit. 24, 377–395 (1926).

    Article  Google Scholar 

  38. H. Weyl,Theory of Representations of Continuous Semi-Simple Groups by Linear Transformations. IV., Math. Zeit. 24, 789–791 (1926).

    Article  Google Scholar 

  39. E. P. Wigner,On the Consequences of the Symmetry of the Nuclear Hamiltonian on the Spectroscopy of Nuclei, Phys. Rev. 51, 106–119 (1937).

    Article  Google Scholar 

  40. A. U. Klimyk,Multiplicities of Weights of Representations and Multiplicities of Representations of Semisimple Lie Algebras, Soviet Math. Doklady 8, 1531–1534 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agrawala, V.K., Belinfante, J.G. Weight diagrams for lie group representations: A computer implementation of Freudenthal's algorithm in ALGOL and FORTRAN. BIT 9, 301–314 (1969). https://doi.org/10.1007/BF01935862

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01935862

Keywords

Navigation