On the Genus of a Hyperplane Section of a Geometrically Ruled Surface (*).

ALDO BIANCOPIORE - ELVIRA LAURA LIVORNI

Summary. - In this paper we estimate the minimal genus of hyperplane sections of a geometrically ruled surface.

Introduction.

Let D be a divisor on a geometrically ruled surface $\pi: X \to C$. If C_0 is a minimal section and f is fiber on X we can write $D = aC_0 + bf$. For a fixed number a we have studied two related problems:

I) What is the minimal b (call it b_a) such that $D = aC_0 + bf$ is very ample?

II) What is the minimal genus λ_a of a very ample divisor D?

For $g = g(C) = 0$ (see [Ha, Corollary, V.2.18]) we have $b_a = ae + 1$ and $\lambda_a = (1/2)a(a - 1)e$, where $e = -C_0 \cdot C_0$ is an invariant of X.

In this paper we obtain some answers for $g > 1$. In particular if $g = 1$ our answer (§ 6) is sharp i.e.

$$b_a = \begin{cases} ae + 3 & \text{if } e > 0 \text{ and any } a \text{ or } e = -1 \text{ and } a < 3 \\ 1 - (a/2) + e(a) & \text{if } e = -1 \text{ and } a > 4 \end{cases}$$

where

$$e(a) = \begin{cases} 1 & \text{if } a \text{ even} \\ (1/2) & \text{if } a \text{ odd} \end{cases}$$

and

$$\lambda_a = \begin{cases} (1/2)a(a - 1)e + 3a - 2 & \text{if } e > 0 \text{ and any } a \text{ or } e = -1 \text{ and } a < 3 \\ (a - 1)e(a) + a & \text{if } e = -1 \text{ and } a > 4 \end{cases}.$$
For \(g \geq 2 \) we found (§ 5) that if \(e > 0 \)

\[
 ae + 1 \leq b_e \leq ae + 2g + 1 \\
(a(a-1)/2)e + ag \leq \lambda_e \leq (a(a-1)/2)e + (3a-2)g
\]

and if \(e < 0 \)

\[
(1/2)ae + e(ae) \leq b_e \leq (1/2)ae + 2g + e(ae) \\
ag + (e(ae) - 1)(a - 1) \leq \lambda_e \leq (3a - 2)g + (e(ae) - 1)(a - 1).
\]

For the case \(g = 2 \) we can improve the above bounds (see § 7). In particular for \(e > 0 \), \(b_e = ae + 5 \) and \(\lambda_e = (1/2)e(a-1)e + 6a - 4 \).

Our results are very useful in the study of smooth, connected, projective, ruled surfaces with the genus of a hyperplane section less than or equal to seven. See [Li1], [Li2], [Bi-Li].

We would like to express our gratitude to Andrew J. Sommese for the numerous conservations that we had at the University of Notre Dame, from which this work benefited.

0. Background material.

The notation, throughout this paper, is essentially that used in [Ha].

(0.1) Let \(X \) be an analytic space. We let \(\mathcal{O}_X \) denote its structure sheaf and let \(h^0(X) = \dim H^0(X, \mathcal{O}_X) \). If \(X \) is a complex manifold, we let \(\mathcal{K}_X \) denote its canonical bundle.

(0.2) Let \(X \) be a smooth connected projective surface. Let \(D \) be an effective Cartier divisor on \(X \). We denote by \(L(D) \), the holomorphic line bundle associated to \(D \). If \(L \) is a holomorphic line bundle on \(X \), \(L \) denotes the linear system of Cartier divisors associated to \(L \). Of course if \(L \) is non-empty then \(L(D) = L \) for \(D \in |L| \). Let \(E \) be a second holomorphic line bundle on \(X \), then \(E \) denotes the evaluation of the cup product, \(C_1(L) \wedge C_1(E) \) on \(X \), where \(C_1(L) \) and \(C_1(E) \) are the Chern classes of \(L \) and \(E \) respectively. If \(D \in |L| \) and \(C \in |E| \), it is convenient to let \(D \cdot C = D \cdot E = L \cdot C = L \cdot E \). We often let \(g = g(L) = (1/2)(L \cdot L + K_X \cdot L + 2) \), which is called the adjunction formula. If there is a smooth \(D \in |L| \), then

\[
 g = g(L) = h^{1,0}(D).
\]

(0.3) Let \(L \) be a line bundle on a projective variety. We say \(L \) is spanned if \(\Gamma(L) \) is generated by its global sections. By [Ha, lemma 7.8] this is equivalent to saying that \(\Gamma(L) \) is base-point-free. We say \(L \) is very ample if \(L \) is spanned and
the map \(\varphi: X \to \mathbb{P}_C^d \) associated to \(\iota(L) \) is an embedding. We say that \(L \) is *ample* if some power of \(L \) is very ample.

(0.4) Let \(D \) be an effective divisor on a smooth connected, projective surface \(X \), \(D \) is *\(k \)-connected* if \(D \cdot D > 0 \) and for every decomposition \(D = D_1 + D_2 \) into effective divisors \(D_1, D_2 > k \).

(0.5) *(Ruled surfaces).* Let \(C \) be a smooth curve of genus \(g \) and \(\pi: X \to C \) a (geometrically) ruled surface. A section of \(X \) is a map \(\sigma: C \to X \) such that \(\pi \circ \sigma = \text{id}_C \). The image of \(\sigma \) is a divisor \(D_\sigma \) which we will also call a section. Let \(C_\sigma \subseteq X \) be a section, and let \(f \) be a fiber, then \(\text{Pic } X \cong \mathbb{Z} \oplus \pi^* \text{Pic } C \), where \(\mathbb{Z} \) is generated by \(C_\sigma \).

Also \(\text{Num } X \cong \mathbb{Z} \oplus \mathbb{Z}_d \) is generated by \(C_\sigma \) and \(f \) with \(C_\sigma \cdot f = 1 \) and \(f \cdot f = 0 \). For any ruled surface there exist a rank 2 vector bundle on \(C \), \(p: E \to C \) such that \(\text{P}(E) \cong X \) and viceversa. We have \(\text{P}(E) \cong \text{P}(E') \) if and only if there is a line bundle \(L \) such that \(E' = E \oplus L \). Moreover it is always possible to write \(X = \text{P}(E) \) with \(H^0(C, E) \neq 0 \) and \(H^0(C, E \oplus L) = 0 \), for every line bundle with \(\deg L < 0 \).

Such an \(E \) is said to be *normalized.* It is not necessarily unique but \(\deg E \) is uniquely determined and is an invariant of \(X \). Let \(e \) be the divisor on \(C \) corresponding to \(\mathcal{L} E \). Set \(e = -\deg e = -\deg \mathcal{L} E \). We fix a section \(C_\sigma \) of \(X \) with \(\mathcal{L}(C_\sigma) = \mathcal{O}_D(1) \). We have \(C_\sigma^2 = \deg e = -e \) and \(C_\sigma \cdot f = 1 \). If \(b \) is any divisor on \(C \), then we denote the divisor \(\pi^* b \) by \(b_f \).

Thus any element of \(\text{Pic } X \) can be written \(aC_\sigma + bf \) with \(a, b \in \mathbb{Z} \) and \(b \in \text{Pic } C \). Any element of \(\text{Num } X \) can be written \(aC_\sigma + bf \) with \(a, b \in \mathbb{Z} \).

If \(D_\sigma = aC_\sigma + b_f \), \(h = 1, 2 \) we get

\[
\begin{align*}
D_1 \cdot D_2 &= a_1 b_2 + a_2 b_1 - a_1 a_2 e \\
D_1^2 &= 2a_1 b_1 - a_2^2 e.
\end{align*}
\]

Moreover since

\[(0.6)\]
\[K_x = -2C_\sigma + (2g - 2 - e)f\]

we get

\[(0.7)\]
\[K_x^2 = 8(1 - g) .\]

If \(D = aC_\sigma + bf \) and setting \(h(D) = \dim H^i(X, L(D)) \), \(i > 0 \) then by the Riemann-Roch Theorem we have

\[(0.8)\]
\[h^i(D) - h^{i+1}(D) = (a + 1)(b - (ae/2) - g + 1) .\]

Let \(D = aC_\sigma + bf \) be a divisor on \(X \). Then \(D \) is ample if and only if

\[(0.9)\]
\[a > 0 \quad \text{and} \quad b > \begin{cases} ae & \text{if } e > 0 \\ (1/2)ae & \text{if } e < 0 . \end{cases} \]
1. Vanishing theorems.

Let \(\pi: X \to C \) be a ruled surface. Let \(X \simeq \mathbb{P}(E) \), where \(E \) is a normalized rank 2 vector bundle. Set \(L(e) = A^2 E \). If \(\deg e = -\epsilon \) then we write (numerically) \(L(e) = L(-\epsilon) \). We have

\[
E = E^* \otimes A^2 E = E^* \otimes L(e)
\]

where \(E^* \) is dual to \(E \). Let \(S^a E \) be the \(a \)-symmetric product of \(E \). Then we have

\[
H^i(X, aC_0 + bI) \simeq H^i(C, S^a E^* \otimes L(b)), \quad i > 0
\]

\[
S^a E \simeq S^a E^* \otimes (A^2 E)^{\otimes a} = S^a E^* \otimes L(\epsilon)
\]

Since \(E \) is normalized we have

\[
H^i(C, E \otimes L(b)) \simeq H^i(X, C_0 + bI) = 0
\]

for any \(b < 0 \). As before we set \(h^i(D) = \dim H^i(X, L(D)) \). Let \(D = aC_0 + bI \) be a divisor on \(X \). Then by the Kodaira Vanishing Theorem we have \(h^i(D) = 0 \) if \(D - K_X \) is ample. Therefore using (0.1) and (0.9) we get \(h^i(D) = 0 \) if

\[
a > 1 \quad \text{and} \quad b > \begin{cases} (a + 1)e + 2g - 2 & \text{if } \epsilon > 0 \\ (1/2)ae + 2g - 2 & \text{if } \epsilon < 0 \end{cases}
\]

By Serre duality, (1.1) and (1.2) we get

\[
H^i(X, aC_0 + bI) \simeq H^i(X, aC_0 + (ae - b + 2g - 2)I)
\]

\[
H^i(X, aC_0 + bI) \simeq H^i(X, aC_0 + (ae - b + 2g - 2)I).
\]

Theorem 1.1. Let \(D = aC_0 + bI \) be a divisor on \(X \), with \(a > 1 \). We have \(h^i(D) = 0 \) if

\[
b > \begin{cases} ae + 2g - 2 & \text{if } a = 1 \text{ and any } \epsilon \text{ or } a > 2 \text{ and } \epsilon > 0 \\ (1/2)ae + 2g - 2 & \text{if } a > 2 \text{ and } \epsilon < 0 \end{cases}
\]

and \(h^4(D) > 0 \) if

\[
b < (1/2)ae + g - 1.
\]

Proof. (1.7) follows from (0.8). Consider now (1.6). The case \(\epsilon < 0 \) was already done in (1.4). We prove the case \(\epsilon > 0 \) by induction. By (1.3) and (1.5) we get \(h^4(D) = 0 \) if \(a = 1 \), \(b > \epsilon + 2g - 2 \) and any \(\epsilon \).
Suppose (1.6) true for \(a - 1 \). We have the short exact sequence

\[0 \rightarrow L(D - C_0) \rightarrow L(D) \rightarrow L(-ae + b) \rightarrow 0 \]

since \(L(D)|_{C_0} \cong L(-ae + b) \). Then

\[H^1(X, L(D - C_0)) \rightarrow H^1(X, L(D)) \rightarrow H^1(C, L(-ae + b)) \rightarrow 0. \]

We have \(b > ae + 2g - 2 > (a - 1)e + 2g - 2 \) since \(e > 0 \). Thus by induction \(H^1(X, L(D - C_0)) = 0 \). Moreover \(-ae + b > 2g - 2 \) implies \(H^1(C, L(-ae + b)) = 0 \). Hence \(h^1(D) = 0 \).

Theorem 1.2. Let \(D = aC_a + bf \) be a divisor on \(X \), with \(a > 1 \). Then \(h^0(D) = 0 \) if

\[b < \begin{cases} 0 & \text{if } a = 1 \text{ and any } e \text{ or } a > 2 \text{ and } e > 0 \\ (1/2)ae & \text{if } a > 2 \text{ and } e < 0 \end{cases} \]

and \(h^0(D) > 0 \) if

\[b > (1/2)ae + g - 1. \]

Proof. (1.9) follows from (0.8). Consider now (1.8). The case \(a = 1 \) is just (1.3). By (1.5) and (1.6) we get (1.8) in the case \(a > 2 \).

2. Very ample line bundles on ruled surfaces.

Let \(D = aC_a + bf \) be a divisor on a ruled surface \(\pi: X \rightarrow C \), with \(a > 1 \). We set \(f_x = \pi^{-1}(x) \) for \(x \in C \).

Lemma 2.1. If \(h^1(D - f_x) = 0 \) then \(L(D)|_{f_x} = \mathcal{O}_D(a) \).

Proof. Since \(h^1(D - f_x) = 0 \) we have

\[0 \rightarrow H^0(X, L(D - f_x)) \rightarrow H^0(X, L(D)) \rightarrow H^0(X, L(D)|_{f_x}) \rightarrow 0. \]

If \(D'|_{f_x} \neq 0 \) for some \(D' \in |L(D)| \) we would have \(L(D)|_{f_x} \cong \mathcal{O}_D(a) \). But \(D'|_{f_x} = 0 \) for every \(D' \in |L(D)| \) implies \(\beta = 0 \), hence \(h^0(D - f_x) = h^0(D) \). On the other hand from (0.8) we get \(h^0(D) = h^0(D - f_x) + (a + 1) + h^0(D) \) which implies \(h^0(D) > h^0(D - f_x) \) since \(a > 1 \) and \(h^0(D) > 0 \). Therefore \(L(D)|_{f_x} = \mathcal{O}_D(a) \).

Proposition 2.2. If \(h^1(D - f_x) = 0 \) then \(L(D) \) is spanned.
Proof. Since $h^i(D - f_x) = 0$ for every x, by lemma 2.1 we have

$$0 \rightarrow L(D - f_x) \rightarrow L(D) \rightarrow \mathcal{O}_{P_x}(a) \rightarrow 0$$

since $\mathcal{O}_{P_x}(a)$ is very ample for $a > 1$ we get that $L(D)$ is spanned. □

Proposition 2.3. If $h^i(D - f_x) = 0$ and $h^i(D - 2f_x) = 0$ then $L(D)$ is very ample.

Proof. We have to prove that $|L(D)|$ separates points and tangent vectors.

Case 1. P and Q (or P and t) not in the same fiber. Let f_P and f_Q be the fibers which P and Q are on respectively. Since $h^i(D - f_P - f_Q) = 0$ and $L(D - f_P)|_{f_Q} = \mathcal{O}_{f_Q}(a)$ we have

$$0 \rightarrow H^i(X, L(D - f_P - f_Q)) \rightarrow H^i(X, L(D - f_P)) \rightarrow H^o(P, \mathcal{O}_{P}(a)) \rightarrow 0.$$

So we can find $D' \simeq D - f_P$ such that $Q \notin D'|_{f_Q}$ i.e. $Q \notin D'$. Hence $Q \notin D' + f_P \simeq D$ but $P \in D' + f_P$. In the case (P and t) we do the same considering $P = Q$. Then we get $P \in D' + f_P$, but $2P \notin D' + f_P$ so t is not a tangent vector to $D' + f_P$ at P.

Case 2. P and Q (or P and t) are both in the same fiber f_x for some $x \in C$. From (2.1) we can find $D' \simeq D$ such that $P \in D'|_{f_x}$ but $Q \notin D'|_{f_x}$ (if $P \in D'$ but $2P \notin D'|_{f_x}$). Hence $P \in D'$ and $Q \notin D'$ (or $P \in D'$ but t is not tangent to D' at P).

Corollary 2.4. — D is spanned if

$$b > \begin{cases}
 \frac{ae + 2g - 1}{2} & \text{if } a = 1 \text{ and any } e \text{ or } a > 2 \text{ and } e > 0 \\
 (1/2)a + 2g - 1 & \text{if } a > 2 \text{ and } e < 0
\end{cases}$$

and D is very ample if

$$b > \begin{cases}
 ae + 2g & \text{if } a = 1 \text{ and any } e \text{ or } a > 2 \text{ and } e > 0 \\
 (1/2)a + 2g & \text{if } a > 2 \text{ and } e < 0
\end{cases}.$$

3. — On the 3-connectedness of a divisor on a ruled surface.

Let $D = aC_0 + bf$ be a divisor on a ruled surface. If $D = D_1 + D_2$ we have $D_1 = aC_0 + (b - \tilde{y})f$ and $D_2 = (a - x)C_0 + (b - \bar{y})f = \tilde{x}C_0 + \bar{y}f$. Assume $D^2 = (2b - ae) > 0$, i.e. $a > 0$ and $b > (1/2)ae$. In order to prove that D is 3-connected we have to prove that for any decomposition $D = D_1 + D_2$ with $D_1 \simeq 0$ and $h^0(D_1) > 1$ we get that $D_1 \cdot D_2 > 3$.

Lemma 3.1. - Assume that $h^0(xC_0 + yf) > 1$, then

\[b) \quad y > \begin{cases}
(1/2)xe & \text{if } x \geq 2 \text{ and } e < 0 \\
0 & \text{if } x = 0, 1 \text{ and } e < 0 \text{ or } e > 0 \text{ and any } x.
\end{cases} \]

Proof. - a) If $x < 0$ then $h^0(D_1) = 0$. It is enough to prove it for $x = -1$, since $h^0(D_1 + C_b) = 0$ implies $h^0(D_1) = 0$ for $x < -2$. We have

\[0 \rightarrow L(D_1) \rightarrow L(yf) \rightarrow L(yf)|_{C_b} \simeq L(y) \rightarrow 0. \]

Since $h^0(yf) = h^0(y)$ and $H^0(X, L(yf)) \rightarrow H^0(C, L(y))$ is surjective, we have $h^0(D_1) = 0$.

b) If $x = 0$, then $h^0(D_1) = 0$ if $y < 0$. Therefore if $x_1 = 0$ and $h^0(D_1) > 0$ it follows that $y > 0$. If $x > 1$ then by (1.8) we get part b). \(\square \)

Proposition 3.2. - Assume that $e < 0$ and $a > 3$. Then D is 3-connected if

\[b > \begin{cases}
0 & \text{if } e = -1 \text{ and } a = 3 \\
(1/2)ae + 1 & \text{otherwise}.
\end{cases} \]

Proof. - By lemma 3.1 x and \bar{x} are non-negative.

Case 1. - Assume $x = 0$ (or $\bar{x} = 0$) from

\[D_1 \cdot D_2 = \begin{cases}
y(a - 2x) + x(-(a - x)e + b) \\
g(a - 2\bar{x}) + \bar{x}(-(a - \bar{x})e + b)
\end{cases} \]

we get $D_1 \cdot D_2 = ya$ (or $= \bar{g}a$). Since $a > 2$ and $y > 0$ ($\bar{g} > 0$) we obtain $D_1 \cdot D_2 > 2$.

Case 2. - Assume $x = 1$ (or $\bar{x} = 1$). From $a - 2x > 0$ and $y > 0$ and (3.1) we have $D_1 \cdot D_2 > b - (a - 1)e$. If $(a, e) = (3, -1)$ then $b > 0$ so $-(a - 1)e + b > 2$, hence $D_1 \cdot D_2 > 2$. If $(a, e) \neq (3, -1)$ then $b > (1/2)ae + 1$ so

\[D_1 \cdot D_2 > b - (a - 1)e > 1 + (1/2)ae - (a - 1)e = 1 - (a - 2)(ae/2) > 2, \]

then $D_1 \cdot D_2 > 2$.

Case 3. - $2 < x < a - 2$ and $a - 2x > 0$ (or $2 < \bar{x} < a - 2$ and $-(a - 2x) = a - 2\bar{x} > 0$) we treat only the part $a - 2x > 0$. The other part is similar. In this case $y = xe/2$ so $D_1 \cdot D_2 > (xe/2)(a - 2x) + x(-(a - x)e + b) = x(b - (1/2)ae)$. If $(a, e) = (3, -1)$ then $b > 0$ and we have $D_1 \cdot D_2 > 3$. If $(a, e) \neq (3, -1)$ then $D_1 \cdot D_2 > x(b - (ae/2)) > 2(b - (ae/2)) > 2$. So $D_1 \cdot D_2 > 2$. \(\square \)
4. – Very ampleness by Bombieri’s method.

We would like to find new conditions for L to be very ample. In order to do this we shall use the following theorem.

Theorem 4.1. – Let L be a line bundle over a surface X. We put $L_0 = L \otimes K_X^{-1}$. If i) $h^0(L_0) \geq 7$; ii) $L_0 \cdot L_0 > 10$; iii) L_0 is 3-connected, then L is very ample.

Proof. – See [VdV].

Theorem 4.1 has been proved using a method of Bombieri. See also [Be], [Bo], [So1] and [So2].

We will apply Theorem 4.1 for $L = L(D)$ where $D = a C_0 + b f$ is a divisor over a ruled surface X. Then $L_0 = L(D_0)$ where

$$D_0 = D - K_x = a C_0 + b f = (a + 2) C_0 + (b - 2g + 2 + \varepsilon) f.$$

We are interested in the case $\varepsilon < 0$ and $a > 2$. By (0.8) we have

$$h^0(D_0) = (a_0 + 1)(b_0 + 1 - g - (a_0 \varepsilon/2)).$$

Since $h^0(D_0) > 0$ we have $h^0(D_0) > 7$ if

\begin{equation}
(4.1) \quad b > 7/(a + 3) + (a \varepsilon/2) + 3g - 3.
\end{equation}

By (0.6) we have $L_0 \cdot L_0 = 2a_0(b_0 - (1/2)a_0\varepsilon) = 2(a + 2)(b - 2g + 2 - (a\varepsilon/2))$. Therefore $L_0 \cdot L_0 > 10$ when

\begin{equation}
(4.2) \quad b > 5/(a + 2) + (a \varepsilon/2) + 2g - 2.
\end{equation}

Moreover by Proposition 3.2 we have L_0 is 3-connected if

\begin{equation}
(4.3) \quad b > (a \varepsilon/2) + 2g - 1.
\end{equation}

We set

$$K_1 = 7/(a + 3) + (a \varepsilon/2) + 3g - 3, \quad K_2 = 5/(a + 2) + (a \varepsilon/2) + 2g - 2, \quad K_3 = (a \varepsilon/2) + 2g - 1 + \varepsilon(a), \quad K_4 = K_3 + 1,$$

where

$$\varepsilon(n) = \begin{cases} 1 & \text{if } n \text{ even} \\ 1/2 & \text{if } n \text{ odd}. \end{cases}$$
Using Theorem 4.1 we have D is very ample if $b > \sum K_0 = \max \{K_1, K_2, K_3\}$. We have $K_1 > K_2$. For $g = 1$ we have $K_0 = K_3$. For $g = 2$

$$K_0 = \begin{cases}
K_1 & \text{if } \begin{cases}
a = 2, 3, 5, 7, 9 \text{ and } e = -1 \\
a = 2, 3 \text{ and } e = -2
\end{cases} \\
K_3 & \text{otherwise}.
\end{cases}$$

For $g > 3$ then $K_0 = K_3$. Therefore by Theorem 4.1 and Corollary 2.4, in the case $e < 0$ and $a \geq 2$, D is very ample when

$$b > \min \{K_0, K_4\} = K$$

and

$$K = K_0 = K_3 \text{ if } g = 1$$

$$K = \begin{cases}
K_1 = K_4 & \text{if } \begin{cases}
a = 2, 3, 5, 7, 9 \text{ and } e = -1 \\
a = 2, 3 \text{ and } e = -2
\end{cases} \\
K_3 & \text{otherwise}.
\end{cases}$$

For $g > 3$ we have $K = K_3$.

5. - The genus of a very ample divisor on a ruled surface.

Let $D = aC_0 + bf$ be a very ample divisor on a ruled surface X. Let $b = \deg b$ and $\gamma = g(D)$. Then by the Adjunction formula we have $2\gamma - 2 = (D - K_0)$ where $K_0 = -2C_0 + (K_0 + e)f$. Therefore

$$(D + K_0)D = 2(a - 1)(b - 1 - (1/2)ae) + 2ag - 2$$

and hence

$$\gamma = (a - 1)(b - 1 - (1/2)ae) + ag.$$

We set $\lambda_a = \lambda_a(C, X)$ and $b_a = b_a(C, X)$ which are respectively the minimum genus and the minimum b of a very ample divisor $D = aC_0 + bf$ on a ruled surface X over the curve C. We have

$$\lambda_a = (a - 1)(b_a - 1 - (1/2)ae) + ag.$$

So finding λ_a is equivalent to finding b_a. The next step is finding an estimate for b_a (or λ_a). We are interested in the case $a \geq 2$. Since if yD is very ample it is
ample. Hence

\[b_\varepsilon > \begin{cases}
 ae & \text{if } \varepsilon > 0 \\
 (1/2)ae & \text{if } \varepsilon < 0
\end{cases} \]

and by corollary 2.4 we have

\[b_\varepsilon < \begin{cases}
 ae + 2g + 1 & \text{if } \varepsilon > 0 \\
 (1/2)ae + 2g + \varepsilon(ae) & \text{if } \varepsilon < 0
\end{cases} \]

Therefore if \(\varepsilon > 0 \)

\[\tag{5.2} ae + 1 < b_\varepsilon < ae + 2g + 1 \]

and

\[\tag{5.3} (a(a - 1)/2)\varepsilon + a\lambda = \lambda < a(a - 1)/2 + (3a - 2)g \]

if \(\varepsilon < 0 \)

\[\tag{5.4} (1/2)ae + \varepsilon(ae) < b_\varepsilon < (1/2)ae + 2g + \varepsilon(ae) \]

and

\[\tag{5.5} a\lambda + (\varepsilon(ae) - 1)(a - 1) < \lambda < (3a - 2)g + (\varepsilon(ae) - 1)(a - 1). \]

If \(g = 0 \) then \(\varepsilon > 0 \) and \(b_\varepsilon = ae + 1 \) hence

\[\tag{5.6} \lambda = (1/2)a(a - 1)e \]

In the case \(g = 1 \) or \(2 \) we can improve the lower bound. By the short exact sequence

\[0 \to L(D - C_0) \to L(D) \to L(D)|_{C_1} \simeq L(ae + b) \to 0 \]

we get that \(L(D) \) very ample implies \(L(ae + b) \) very ample.

In the case \(g = 1 \) or \(2 \), \(L(ae + b) \) is very ample if and only if \(b > ae + 2g \). If \(\varepsilon > 0 \) we have \(ae + 2g + 1 > ae + 1 \) and

\[\tag{5.7} b_\varepsilon = ae + 2g + 1, \]

\[\tag{5.8} \lambda_\varepsilon = (1/2)a(a - 1)e + (3a - 2)g. \]

If \(\varepsilon < 0 \) we have

\[(1/2)ae \begin{cases} > ae + 2g & \text{if } a > -4g/e \\
< ae + 2g & \text{if } a < -4g/e
\end{cases} \]
So

\[(5.9) \quad b_a > \begin{cases} \frac{a e + 2g + 1}{2} & \text{if } a < -4g/e \\
(1/2)ae + e(a) & \text{if } a > -4g/e . \end{cases}\]

6. - The case \(g = 1 \).

If \(e > 0 \) we have (5.7) and (5.8). It only remains to study the case \(e = -1 \).

By (5.4), (5.9) and (4.4) we have for \(a > 2 \)

\[(6.1) \quad 1 - (a/2) + e(a) > b > \begin{cases} a + 3 & \text{if } a < 3 \\
-(a/2) + e(a) & \text{if } a > 4 . \end{cases}\]

We already know \(b_1 = 2 \). From (6.1) we have \(b_2 = 1 \) and \(b_3 = 0 \). If \(a > 4 \) then \(b_a \) is either \(-(a/2) + e(a) \) or \(1 - (a/2) + e(a) \). We set \(D_a = aC_a + (-(a/2) + e(a))f \).

Theorem 6.1. - \(D_a \) is not very ample.

In order to prove Theorem 6.1 we need the following.

Lemma 6.2. - Let \(X \) be a ruled surface over \(C \). Assume \(e = -1 \). Then there is \(P \in C \) such that \(h^0(2C_0 - Pf) > 1 \).

Proof. - We put \(D = 2C_0 - f \). By (0.8) we have \(h^0(D) = h^1(D) \) and \(h^0(2C_0) = h^1(2C_0) = 3 \). By (1.6) \(h^1(2C_0) = 0 \), so \(h^0(2C_0) = 3 \). Now \(h^0(2C_0) = h^0(S^2E) \) so there is a section \(\sigma \) in \(S^2E \) which has some zero, otherwise \(S^2E \) would be trivial which implies \(A^2S^2E = L(3e) \) is trivial which is a contradiction. Then by (1.8) we have \(D[\sigma] = (P) \), i.e. only one point, and \(h^0(2C_0 - Pf) > 1 \). □

Proof of Theorem 6.1. - Suppose \(D_a \) very ample. We set \(D_0 = 2C_0 - Pf \).

We have \(D_a \cdot D_0 = 2e(a) \), i.e. \(D_a \cdot D_0 = 1 \) if \(a \) is odd and \(D_a \cdot D_0 = 2 \) if \(a \) is even. In both cases \(D_0 \) is a smooth rational curve (since \(D_0 \) is irreducible) with respect to the embedding provided by \([D_0] \). But \(\pi|_{D_0} : D_0 \to C \) is a 2:1 map over an elliptic curve, which is a contradiction. □

Theorem 6.3. - Let \(D = aC_a + bf \) be divisor on a ruled surface \(X \) over an elliptic curve \(C \). Assume that \(a > 1 \). Then \(D \) is very ample if and only if

\[(6.2) \quad b > \begin{cases} ae + 2 & \text{if } e > 0 \text{ and any } a \text{ or } e = -1 \text{ and } a < 3 \\
1 - (a/2) & \text{if } e = -1 \text{ and } a > 4 . \end{cases}\]
Corollary 6.4. - Let D be as above. Then

$$b_a = \begin{cases}
 ae + 3 & \text{if } e > 0 \text{ and any } a \text{ or } e = -1 \text{ and } a < 3 \\
 1 - \frac{a}{2} + \varepsilon(a) & \text{if } e = -1 \text{ and } a > 4
\end{cases}$$

$$\lambda_a = \begin{cases}
 \frac{1}{2}a(a-1)e + 3a - 2 & \text{if } e > 0 \text{ and any } a \text{ or } e = -1 \text{ and } a < 3 \\
 (a - 1)e(a) + a & \text{if } e = -1 \text{ and } a > 4.
\end{cases}$$

7. - The case $g = 2$.

Let X be a ruled surface over a curve C with $g = g(C) = 2$. Let $D \equiv aC_b + bf$ be a divisor over X with $a > 2$. As for the case $g = 1$, if $e > 0$ we have

$$b_a = ae + 5 \quad (\text{actually it holds also for } a = 1 \text{ and } e < 0).$$

When $e < 0$ we have two cases $e = -1$ and $e = -2$. At first we consider the cases $e = -1$. From (5.4), (5.9) and (4.5) we have

$$\begin{align*}
 b_a &< \begin{cases}
 -a + 5 & \text{if } a < 7 \\
 -(a/2) + \varepsilon(a) & \text{if } a > 8
 \end{cases} \\
 b_a &> \begin{cases}
 -(a/2) + 6 + \varepsilon(a) & \text{if } a = 2, 3, 5, 7, 9 \\
 -(a/2) + 3 + \varepsilon(a) & \text{otherwise}
 \end{cases}
\end{align*}$$

Therefore

$$\begin{align*}
 \lambda_a &< \begin{cases}
 6a - 4 - (a/2)a(a - 1) & \text{if } a < 7 \\
 (a - 1)(\varepsilon(a) - 1) + 2a & \text{if } a > 8
 \end{cases} \\
 \lambda_a &> \begin{cases}
 6a + 4 + (a - 1)(\varepsilon(a) - 1) & \text{if } a = 2, 3, 5, 7, 9 \\
 5a - 3 + (a - 1)(\varepsilon(a) - 1) & \text{otherwise}
 \end{cases}
\end{align*}$$

Now we consider the case $e = -2$. From (5.4), (5.9) and (4.5) we have

$$\begin{align*}
 b_a &> \begin{cases}
 -2a + 5 & \text{if } a < 3 \\
 -a + 1 & \text{if } a > 4
 \end{cases} \\
 b_a &< \begin{cases}
 -a + 5 & \text{if } a < 3 \\
 -a + 4 & \text{if } a > 4.
 \end{cases}
\end{align*}$$
Therefore
\[
\lambda_a = \begin{cases}
(a - 1)(4 - a) + 2a & \text{if } a < 3 \\
2a & \text{if } a \geq 4
\end{cases}
\]
(7.5)
\[
\lambda_a = \begin{cases}
6a - 4 & \text{if } a < 3 \\
5a - 3 & \text{if } a \geq 4
\end{cases}
\]

REFERENCES

[Li1] E. L. Livorni, Classification of algebraic surfaces with sectional genus less than or equal to six. - II: Ruled surfaces with \(\dim \Phi_{\mathcal{X}_\mathbb{P}^2}(\mathcal{X}) = 1\), Can. J. of Math., 37, No. 4 (1986)

[Li2] E. L. Livorni, Classification of algebraic ruled surfaces with sectional genus less than or equal to six and \(\dim \Phi_{\mathcal{X}_\mathbb{P}^2}(\mathcal{X}) = 2\), Math. Scand., 58 (1986).

