BOOK REVIEW - SHORT NOTICE

Cholinergic Mechanisms
Advances in behavioural biology, vol. 25

G. Pepeu and H. Ladinsky, editors

This hefty volume contains close on 100 papers presented at a symposium held in March 1980. The contributions cover every conceivable topic related to cholinergic transmission. There are papers on the ontogeny and phylogeny of cholinergic neurons, on the synthesis, axonal transport and release of ACh and on the postsynaptic effects of ACh in autonomic ganglia, skeletal muscle and heart. A substantial number of papers deal with the eye and the C.N.S., where research on cholinergic mechanisms has been proceeding apace in recent years. There are papers on the metabolism of ACh and AChR in the C.N.S., on cholinergic pathways, on the normal and abnormal functioning of C.N.S. cholinergic synapses, and on interactions in the brain between cholinergic neurons and neurons employing other transmitters. In addition several papers deal with behavioural and clinical aspects of cholinergic systems.

Production is standard camera ready copy conference proceedings quality with just adequate half-tone illustrations (but a couple of nice colour plates), an adequate subject index and an author index. The price is high, but given the size of the book and the fact that it is an overflowing cornucopia for cholinologists, perhaps not unreasonable.

Erratum

Two printing errors were made in the above paper on p. 684. The correct version is printed below:

The question of qualitative oligodendrocytic alterations aside, there seems to be a general agreement that the number of oligodendrocytes is decreased in jp and that the maturation of these cells is arrested (Farkas-Bargeton et al., 1972; Privat et al., 1972; Kraus-Ruppert et al., 1973; Meier & Bischoff, 1975; Skoff, 1976, 1981; Webster & Sternberger, 1980). In md also, the relative number of oligodendroglia decreases with increasing age. Furthermore, although there are normal-appearing immature oligodendrocytes in younger mutants (up to 10 days of age), there are very few mature cells of this line. In a 46 day old mutant (Dentingger & Barron, unpublished data), only 6% of the glial population of the optic nerves could be identified as oligodendrocytes and all of these displayed the dilation of the nuclear envelope and RER as described above.