Skip to main content
Log in

A nonlinear quadrilateral shell element with drilling degrees of freedom

Ein nichtlineares Vier-Knoten-Schalenelement unter Verwendung von Drehfreiheitsgraden in der Schalenmittelfläche

  • Originals
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Summary

A bending theory for thin shells undergoing finite deformations is presented, and its associated finite element model is described. The kinematic assumptions are of Reissner-Mindlin type. The formulation is based on the introduction of a mixed functional with independent in-plane rotation field and skew-symmetric part of membrane forces. The resulting Euler-Lagrangian equations yield the equilibrium of stress resultants and the couple resultant with respect to the surface normal. Furthermore, the equality of the independent rotation field with the displacement dependent rotation field is enforced. Hence, the symmetry of the stress resultants is fulfilled in a weak sence. Naturally, the development of a quadrilateral finite element includes drilling degrees of freedom. The displacement field is approximated using an Allman-type interpolation.

Übersicht

Es wird eine Biegetheorie dünner Schalen bei finiten Deformationen sowie die zugehörige Finite-Element-Formulierung vorgestellt. Die kinematischen Annahmen sind vom Reissner-Mindlin-Typ. Die Darstellung basiert auf der Einführung eines gemischten Funktionals mit unabhängigen Drehfreiheitsgraden in der Schalenmmittelfläche und einem schiefsymmetrischen Anteil der Membrankräfte. Die resultierenden Euler-Lagrange-Gleichungen ergeben das Gleichgewicht und die Symmetrie der Schnittgrößen. Weiterhin ergibt sich die Gleichheit des unabhängigen mit dem verschiebungsabhängigen Rotationsfeld. Die Entwicklung des Vier-Knoten-Schalenelementes enthält somit auch den Drehfreiheitsgrad um die Schalenormale. Für das Verschiebungsfeld wird ein Allman-Ansatz gewählt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allman, D. J.: A compatible triangular element including vertex rotations for plane elasticity analysis. Comp. & Struct. 19 (1984) 1–8

    Google Scholar 

  2. Allman, D. J.: A quadrilateral finite element including vertex rotations for plane elasticity analysis. Int. J. Num. Mrth. Eng. 26 (1988) 717–730

    Google Scholar 

  3. Badur, J.; Pietraszkiewicz, W.: On geometrically non-linear theory of elastic shells derived from pseudo-cosserat continuum with constrained micro-rotations. In: Pietraszkiewicz, W. (ed.): Finite rotations in structural mechanics (Proc. Euromech Coll. 197, Jablonna, Poland, 1985), pp. 216–255 Berlin, Heidelberg, New York: Springer 1985

    Google Scholar 

  4. Bergan, P. G.; Fellipa, C. A.: A triangular membrane element with rotational degrees of freedom. Comp. Meth. Appl. Mech. Eng. 50 (1985) 25–60

    Google Scholar 

  5. Gruttmann, F.; Stein, E.; Wriggers, P.: Theory and numerics of thin elastic shells with finite rotations. Ing. Arch. 59 (1989) 54–67

    Google Scholar 

  6. Gruttmann, F.; Taylor, R. L.: Theory and finite element formulation of rubberlike membrane shells using principal stretches. Int. J. Num. Meth. Eng. (in press)

  7. Ibrahimbegovic, A.; Taylor, R. L.; Wilson, E. L.: A robust quadrilateral membrane element with drilling degrees of freedom. Int. J. Num. Meth. Eng. 30 (1990) 445–457

    Google Scholar 

  8. Ibrahimbegovic, A.; Wilson, E. L.; Taylor, R. L.: A unified formulation for quadrilateral and triangular flat shell elements with drilling degrees of freedom. Comm. Appl. Num. Meth. (in press)

  9. Jetteur, P.: A shallow shell element with in-plane rotational degrees of freedom. IREM Internal Rep. 86/3, Départment de Génie Civil, Institut de Statique et Structures, École Polytechnique Fédérale de Lausanne 1986

  10. Jetteur, P.: Improvement of the quadrilateral JET shell element for a particular class of shell problems. IREM Internal Rep. 87/1, Département de Génie Civil, Institut de Statique et Structures, École Polytechnique Fédérale de Lausanna 1987

  11. Jetteur, P.: Improvement and large rotations of the JET shell element in nonlinear analysis. IREM Internal Rep. 87/4, Département de Génie Civil, Institut de Statique et Structures, École Polytechnique Fédérale de Lausanne, Lausanne 1987

    Google Scholar 

  12. Jetteur, P.; Frey, F.: A four node Marguerre element for non-linear shell analysis. Eng. Comp. 3 (1986) 276–282

    Google Scholar 

  13. MacNeal, R. H.: A theorem regarding the locking of tapered four-noded membrane elements. Int. J. Num. Meth. Eng. 24 (1987) 1793–1799

    Google Scholar 

  14. MacNeal, R. H.; Harder, R. L.: A refined four-noded membrane element with rotational degrees of freedom, Comp. & Struct. 28 (1988) 75–88

    Google Scholar 

  15. Hughes, T. J. R.; Brezzi, F.: On drilling degrees of freedom. Comp. Meth. Appl. Mech. Eng. 72 (1989) 105–121

    Google Scholar 

  16. Reissner, E.: A note on variational theorems in elasticity. Int. J. Solids Struct. 1 (1965) 93–95

    Google Scholar 

  17. Sabir, A. B.; Lock, A. C.: The Application of finite elements to the large deflection geometrically non-linear behaviour of cylindrical shells. In: Brebbia, C. A.; Tottenham, H. (eds) Variational methods in engineering, pp. 7/66–7/75. Southampton: Southampton University Press 1973

    Google Scholar 

  18. Simo, J. C.; Fox, D. D.: On a stress resultant geometrically exact shell model, part I: Formulation and optimal parametrization. Comp. Meth. Appl. Mech. Eng. 72 (1989) 267–304

    Google Scholar 

  19. Simo, J. C.; Fox, D. D.; Rifai, M. S.: On a stress resultant geometrically exact shell model, Part III: Computational aspects of the nonlinear theory. Comp. Meth. Appl. Mech. Eng. 79 (1990) 21–70

    Google Scholar 

  20. Stein, E.; Gruttmann, F.; Lambertz, K.-H.: Elastic-plastic analysis of thin shells. In: Krätzig, W. B.; Oñate, E. (eds.) Computational mechanics of nonlinear response of shells, pp. 56–82. Berlin, Heidelberg, New York: Springer 1990

    Google Scholar 

  21. Taylor, R. L.: Finite element analysis of linear shell problems. In Whiteman, J. R. (ed.) Proc. Mathematics of finite elements and applications VI (MAFELAP) pp. 191–203. London, New York: Academic Press 1988

    Google Scholar 

  22. Taylor, R. L.: Simo, J. C.: Bending and membrane elements for analysis of thick and thin shells. In: Middleton, J., Pande G. N. (eds) Proc. NUMETA 1985, pp. 578–591, Amsterdam: Elsevier 1985

    Google Scholar 

  23. Wagner, W.; Wriggers, P.; Stein, E.: A shear-elastic shell theory and finite-element-postbuckling analysis including contact. In: Szabo, J. (ed.) Proceedings of the Euromech 200, Matrafüred, 1985, pp. 381–404

  24. Wriggers, P.; Gruttmann, F.: Large deformations of thin shells: Theory and finite-element-discretization. In: Noor, A.; Belytschko, T.; Simo, J. C. (eds) Analytical and computational models of shells, pp. 135–159 New York: ASME 1989

    Google Scholar 

  25. Wriggers, P.; Gruttmann, F.: Thin shells with finite rotations formulated in Biot stresses: Theory and finite element formulation (submitted to Int. J. Num. Meth. Eng.)

  26. Zienkiewicz, O. C.; Taylor, R. L.: The finite element method (4th ed.) London: McGraw Hill 1989

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruttmann, F., Wagner, W. & Wriggers, P. A nonlinear quadrilateral shell element with drilling degrees of freedom. Arch. Appl. Mech. 62, 474–486 (1992). https://doi.org/10.1007/BF00810238

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00810238

Keywords

Navigation