Skip to main content
Log in

Theoretical analysis of trapping and recombination of photogenerated carriers in amorphous silicon solar cells

  • Contibuted Papers
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have made theoretical studies on the trapping and recombination of photogenerated carriers in hydrogenated amorphous silicon (a-Si∶H) p-i-n solar cells. We discuss in detail the following points: 1) The limitations of the assumptions in the previous analysis. It has been clarified that the single-level Shockley-Read-Hall model for carrier recombination and the treatment of trap occupation in terms of quasi-Fermi levels are inadequate for exact analysis. 2) The superlinear dependence of carrier recombination rate on the free-carrier density which can explain the enhancement of photo-induced changes ina-Si∶H under high intensity light. 3) The estimation of capture cross section of the tail states ina-Si∶H. We show that the charged and neutral tail states have rather small capture cross sections of less than 10−16 cm2 and of less than 10−19 cm2, respectively. 4) The effect of the recombination of photogenerated (PG) carriers at the p/i and the n/i interfaces. We estimate the recombination velocityS of PG carriers at these interfaces to be about 103 cm/s. It has been also clarified that the decrease inS is effective to improve the cell performance, especially the open circuit voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.S. Crandall: J. Appl. Phys.54, 7176 (1983)

    Google Scholar 

  2. H. Okamoto, H. Kida, S. Nonomura, K. Fukumoto, Y. Hamakawa: J. Appl. Phys.54, 3236 (1983)

    Google Scholar 

  3. P. Sichanugrist, M. Konagai, K. Takahashi: J. Appl. Phys.55, 1155 (1984)

    Google Scholar 

  4. I. Chen, S. Lee: Appl. Phys. Lett.40, 487 (1982)

    Google Scholar 

  5. I. Sakata, Y. Hayashi: IEEE Trans. ED-32, 55(1985)

    Google Scholar 

  6. R.E. Lagos, H. Suhl, T. Tiedje: J. Appl. Phys.54, 3951 (1983)

    Google Scholar 

  7. M. Hack, M.S. Shur: J. Appl. Phys.54, 5858 (1983)

    Google Scholar 

  8. T. Kuwano, S. Tsuda, M. Ohnishi: Jpn. J. Appl. Phys.21, 235 (1982)

    Google Scholar 

  9. Exactly speaking, the density of gap-states given by (8–12) becomes minimum at the energy slightly different from Em ifU is not equal to unity. One can obtain this energy position with the condition that the differentiation ofg(E) withE becomes zero. For example, the density of states given by Curve1 in Fig. 2 goes to the minimum at the energy of 0.0935 eV shifted by 0.0065 eV from Em of 0.1 eV assumed for this case.

  10. S. Yamasaki, H. Oheda, A. Matsuda, H. Okushi, K. Tanaka: Jpn. J. Appl. Phys.21, L539 (1982)

    Google Scholar 

  11. T. Suzuki, M. Hirose, Y. Osaka: Solar Energy Mater.8, 285 (1982)

    Google Scholar 

  12. G.D. Cody, C.R. Wronski, B. Abeles, R.B. Stephens, B. Brooks: Solar Cells2, 227 (1980)

    Google Scholar 

  13. J. Kočka, M. Vaněcěk, J. Stuchlik, O. Štika, E. Sipek, H.T. Ha, A. Tříska: InProc. 4th E.C. Photovoltaic Solar Energy Conf. (Reidel, Dordrecht 1982) pp. 443–447

    Google Scholar 

  14. R.A. Street, D.K. Biegelsen: InThe Physics of Hydrogenated Amorphous Silicon II, ed. by J.D. Joannopoulos and G. Lucovsky, Topics Appl. Phys.56 (Springer, Berlin, Heidelberg 1984) pp. 195–259

    Google Scholar 

  15. J.G. Simmons, G.W. Taylor: Phys. Rev. B4, 502 (1971)

    Google Scholar 

  16. G.A. Swartz: J. Appl. Phys.53, 712 (1982)

    Google Scholar 

  17. H. Okamoto, H. Kida, Y. Hamakawa: Philos. Mag. B49, 231 (1984)

    Google Scholar 

  18. Y. Kuwano, M. Ohnishi, S. Nakano, T. Fukatsu, H. Nishiwaki, S. Tsuda: InProc. 4th E.C. Photovoltaic Solar Energy Conf. (Reidel, Dordrecht 1982) pp. 704–708

    Google Scholar 

  19. H.J. Hovel:Semiconductor and Semimetals 11, 21 (Academic, New York 1975)

    Google Scholar 

  20. F. Carasco, W.E. Spear: Philos. Mag. B47, 495 (1983)

    Google Scholar 

  21. H. Okamoto, H. Kida, S. Nonomura, Y. Hamakawa: Solar Cells9, 317 (1983)

    Google Scholar 

  22. W.E. Spear: J. Non-Cryst. Solids59, 60, 1 (1983)

    Google Scholar 

  23. H. Okushi, Y. Tokumaru, S. Yamasaki, H. Oheda, K. Tanaka: Phys. Rev. B25, 4313 (1982)

    Google Scholar 

  24. D. Jousse, S. Deleonibus: J. Appl. Phys.54, 4001 (1983)

    Google Scholar 

  25. D.L. Staebler, C.R. Wronski: J. Appl. Phys.51, 3262 (1980)

    Google Scholar 

  26. Y. Tawada, K. Nishimura, S. Nonomura, H. Okamoto, Y. Hamakawa: Solar Cells9, 53 (1983)

    Google Scholar 

  27. S. Guha: Appl. Phys. Lett.45, 569 (1984)

    Google Scholar 

  28. B. Goldstein, J. Dresner, D.J. Szostak: Philos. Mag. B46, 63 (1982)

    Google Scholar 

  29. H. Fritzsche: Presented at the Topical Conf. on Optical Effects in Amorphous Semiconductors, Snowbird, Utah, USA (1984)

    Google Scholar 

  30. M. Hack, M.S. Shur: J. Appl. Phys.55, 2967 (1984)

    Google Scholar 

  31. Y. Hamakawa:Proc. of 14th Conf. on Solid State Devices (Publication Office of Jpn. J. Appl. Phys., Tokyo 1983) pp. 527–534

    Google Scholar 

  32. Y. Tawada, K. Tsuge, M. Kondo, H. Okamoto, Y. Hamakawa: J. Appl. Phys.53, 5237 (1982)

    Google Scholar 

  33. H. Iida, T. Mishuku, Y. Hayashi: IEEE Trans. ED-31, 718 (1984)

    Google Scholar 

  34. Defects in Semiconductors, ed. by J. Narayan, T.Y. Tan (North-Holland, New York 1981) and the references therein

    Google Scholar 

  35. M. Lannoo, J. Bourgoin:Point Defects in Semiconductors I, II, Springer Ser. Solid-State Sci.22, 35 (Springer, Berlin, Heidelberg 1981, 1983)

    Google Scholar 

  36. J.T. Martinez, L.E. Sansores, E.A. Cetina: Phys. Rev. B27, 2435 (1983)

    Google Scholar 

  37. T. Sakurai, T. Sugano: J. Appl. Phys.52, 2889 (1981)

    Google Scholar 

  38. H. Deuling, E. Klausmann, A. Goetzberger: Solid State Electron.15, 559 (1972)

    Google Scholar 

  39. T. Saitoh, S. Muramatsu, T. Shimada, M. Migitaka: Appl. Phys. Lett.42, 678 (1983)

    Google Scholar 

  40. T. Tanaka, W.Y. Kim, M. Konagai, K. Takahashi: Appl. Phys. Lett.45, 865 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakata, I., Hayashi, Y. Theoretical analysis of trapping and recombination of photogenerated carriers in amorphous silicon solar cells. Appl. Phys. A 37, 153–164 (1985). https://doi.org/10.1007/BF00617500

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00617500

PACS

Navigation