Skip to main content
Log in

Analysis of the ouabain-induced increase in transepithelial electrical resistance in the goldfish intestinal mucosa

  • Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

  1. 1.

    The ouabain-induced increase in transmural resistance of goldfish intestinal mucosa stripped free from underlying muscular layers is analysed by comparing the resistance increase in normal and in low chloride saline, the resistance increase induced by anaerobic conditions and the resistance increase provoked by hypotonicity.

  2. 2.

    It is concluded that the collapse of the lateral intercellular space is the prime reason for the resistance increase and that the lateral intercellular space is maintained dilated by a ouabain-sensitive solute transport mechanism.

  3. 3.

    This mechanism can be either a rheogenic or a neutral Na/K-pump. In the latter case additional conditions have to be specified concerning values for ion concentrations in the lateral intercellular space and in the unstirred layer adjacent to the luminal membrane.

  4. 4.

    There are no indications for a chloride dependent mechanism involved in the maintenance of the width of the lateral intercellular spaces in the goldfish intestinal mucosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albus H, Groot JA, Siegenbeek van Heukelom J (1979) Effects of glucose and ouabain on transepithelial electrical resistance and cell volume in stripped and unstripped goldfish intestine. Pfügers Arch 383:55–66

    Google Scholar 

  2. Armstrong WMcD, Byrd BJ, Cohen ES, Cohen SJ, Hamang PH, Myers CJ (1975) Osmotically induced electrical changes in isolated bullfrog small intestine. Biochim Biophys Acta 401:137–151

    Google Scholar 

  3. Bakker R, Albus H (1981) Analysis of electrophysiological phenomena upon glucose addition to the mucosal side of isolated intestinal mucosa of the goldfish. Abstract of the 4th meeting of the European Intestinal Transport Group. Gastroenterol Clin Biol (in press)

  4. Bakker R, Siegenbeek van Heukelom J (1979) Electrogenic processes in membranes of the goldfish intestine. Gastroenterol Clin Biol 3:170

    Google Scholar 

  5. Blom H, Helander HF (1977) Quantitative elctron microscopical studies on in vitro incubated rabbit gallbladdr epithelium. J Membr Biol 37:45–61

    Google Scholar 

  6. Diamond JM, Bossert WH (1967) Standing-gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia. J Gen Physiol 50:2061–2083

    Google Scholar 

  7. Curci S, Frömter E (1979) Micropuncture of lateral intercellular space of necturus gallbladder to determine space fluid K+ concentration. Nature 278:355–357

    Google Scholar 

  8. Dibona DR, Civan MM (1970) The effect of smooth muscles on the intercellular spaces in toad urinary bladder. J Cell Biol 46:235–224

    Google Scholar 

  9. Field M, Karnaky KJ, Smith PL, Bolton EJ, Kinter WB (1978) Ion transport across the isolated intestinal mucosa of the winter flounder, Pseudopleuronectes americanus. I. Functional and structural properties of cellular and paracellular pathways for Na and Cl. J Membr Biol 42:265–293

    Google Scholar 

  10. Glynn IM, Karlish SJD (1975) The sodium pump. Annu Rev Physiol 37:13–55

    Google Scholar 

  11. Groot JA (1980) Changes in ion content in isolated goldfish intestinal epithelium upon replacement of sodium or chloride in the bathing solution. Proc Intern Union Physiol Sciences XIV:448

    Google Scholar 

  12. Groot JA (1981) Cell volume regulation of goldfish intestinal mucosa. Pflügers Arch 392:57–66

    Google Scholar 

  13. Groot JA, Albus H, Siegenbeek van Heukelom J (1979) A mechanistic explanation of the effect of potassium on goldfish intestinal transport. Pflügers Arch 379:1–9

    Google Scholar 

  14. Koefoed-Johnsen V, Ussing HH (1958) The nature of the frog skin potential. Acta Physiol Scand 42:298–308

    Google Scholar 

  15. Lutz MD, Cardinal J, Burg MB (1973) Electrical resistance of renal tubule perfused in vitro. Am J Physiol 225:729–734

    Google Scholar 

  16. Moreno JH, Diamond JM (1974) Discrimination of monovalent inorganic cations by tight junctions of gallbladder epithelium. J Membr Biol 15:277–318

    Google Scholar 

  17. Okada Y, Tsuchiya W, Irimajiri A, Inouye A (1977) Electrical properties and active solute transport in rat small intestine. J Membr Biol 31:205–219

    Google Scholar 

  18. Renfo JL, Miller DS, Karnaky KJ, Kinter WB (1976) Na−K-ATPase localization in teleost urinary bladder by3H ouabain autoradiography. Am J Physiol 231:1735–1743

    Google Scholar 

  19. Reuss L (1979) Electrical properties of the cellular transepithelial pathway in necturus gallbladder. III. Ionic permeability of the basolateral membrane. J Membr Biol 47:239–259

    Google Scholar 

  20. Rose RC, Nahrwold DL, Koch MJ (1977) Electrical potential profile in rabbit ileum: role of rheogenic Na transport. Am J Physiol 232:E5-E12

    Google Scholar 

  21. Rose RC, Nahrwold DL (1980) Electrolyte transport in necturus gallbladder: the role of rheogenic Na transport. Am J Physiol 238:G358-G365

    Google Scholar 

  22. Schultz SG (1977) Sodium coupled solute transport by small intestine: a status report. Am J Physiol 233:E249-E254

    Google Scholar 

  23. Schultz SG (1978) Is a coupled Na−K exchange “pump” involved in active transepithelial Na transport? A status report. In: Hoffman JF (ed) Membrane transport processes, Vol 1. Raven Press, New York, p 213

    Google Scholar 

  24. Schultz SG, Frizzell RA, Nellans HN (1974) Ion transport by mammalian small intestine. Annu Rev Physiol 36:51–91

    Google Scholar 

  25. Shindo T, Spring KR (1981) Chloride movement across the basolateral membrane of proximal tubule cells. J Membr Biol 58:35–42

    Google Scholar 

  26. Spring KR, Hope A (1979) Fluid transport and the dimensions of cells and interspaces of living necturus gallbladder. J Gen Physiol 73:287–305

    Google Scholar 

  27. Zeuthen T (1981) On the effects of amphotericin B and ouabain on the electrical potentials of necturus gallbladder. J Membr Biol 60:167–169

    Google Scholar 

  28. Zuidema T, Groot JA, Siegenbeek van Heukelom J (1981) Chloride transport in the isolated intestinal mucosa of the goldfish. Proc 22nd Dutch Fed Meeting, p 514

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groot, J.A., Albus, H. & Bakker, R. Analysis of the ouabain-induced increase in transepithelial electrical resistance in the goldfish intestinal mucosa. Pflugers Arch. 392, 67–71 (1981). https://doi.org/10.1007/BF00584584

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00584584

Key words

Navigation