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Canonical Variables for the Dirac Theory 
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Abstract. A new canonical structure for Dirac's theory is proposed. The new configuration space A is a real, 
four-dimensional subbundle of the spinor bundle. A Lagrangian defined on Q describes a theory equivalent 
to the Dirac one. In this way we obtain a theory without second-type constraints. 

1. Introduction 

A new variational formulation for the theory of the bispinor field (Dirac theory) is 
proposed in this Letter. 

The problem of canonical formulation for Dirac's theory is essential for describing 
the interaction between gravitational and spinor fields. Usually, the Lagrangian L, which 
describes the theory of the bispin~r field, is a linear function of the first derivatives of 
bispinor variables; cf., [6]. For example, in the Minkowski space, this Lagrangian has 
a form 

L = ~i (~7~Ou ~ _ ~ 7 ~ , t p  ) _ m ~ W  �9 (1) 

The linearity of L implies the following Hamiltonian constraints 

~L i p~, : -  _ - yuq, .  
O~P~, 2 

These are constraints of the second type in Dirac's classification [3]. The quantization 
of the theory with second-type constraints is obtained by a rather heavy procedure. 
However, it seems that such constraints result from a false recognition of the canonical 
structure. 

Let us illustrate the problem by the following simple example taken from classical 
particle mechanics. Our aim will be to show the difference between the standard 
approach to Dirac's theory and a new procedure proposed later. 

We consider a mechanical system with a configuration space C ~ (the variable z ~ C 1 
is an analog of the bispinor field qJ ~ C4). The evolution equations are described by a 
Lagrangian L, which corresponds to the standard Dirac Lagrangian (1): 

i 
L : =  - (2,~ - zz) - ~,z (2) 

2 

(7 is a complex conjugate to z and ~ is a time derivative of z). 



172 A N D R Z E J  J A K U B I E C  

A complex momentum p is now given by the formula 

OL i 
�9 - - z ( 3 )  

P 0} 2 

and the motion equation is given by i~ - z = 0. 
In real coordinates 

1 1 
(x + iy) ; (px + ipy), 

formula (3) reads 

1 1 
p x  - ~ y =  O , p y  + ~ x  = O.  

We deal with second-type constraints since the Poisson bracket does not vanish: 

{Py  + 1  x ,  p x  - l y }  = 1 .  

The equations of motion are 

2 - y = O ,  p + x = 0  

and, thus, we obtain the following real equation of motion, ~ + x = 0. The theory 
described by Lagrangian (2) is, therefore, a theory of the harmonic oscillator. It admits 
a simple formulation starting with x = Rez as a configuration and y - - I m z  as a 
momentum conjugate to x. To explain the role of the unusual Lagrangian (2) let us 
rewrite it in terms of x and y: 

1 2 L ( x ,  y ,  2 ,  f )  = C ( y 2  _ f i x  - x 2 - y2) = y• _ g[x + y2 + (xy) '] .  

We see that up to a complete time derivative, Lagrangian (2) is equivalent to 

_ 1 2 s y, 5c, f )  = ySc 5(x + y2) = y •  _ H ( x ,  y ) .  

The numerical value of the latter is precisely equal to that of the standard Lagrangian 
for the harmonic oscillator which we obtained from the Hamiltonian H via the Legendre 
transformation. The next step of the Legendre transformation consists of expressing 
momentum y in terms of velocity 5c. This way we obtain the standard Lagrangian for 
the harmonic oscillator. To pass from two degrees of freedom (z or (x, y)) to one degree 
of freedom (x) is an important simplification. The price we must pay for this simplifi- 
cation is that the symmetry of the first Lagrangian (2) with respect to the transformation 

z ' = z e  -i~~ q ~ R  1 

cannot be described on a Lagrangian level. This is essentially the Hamiltonian symmetry 
and not a Noether symmetry. 

The aim of this Letter is to show that an analogical simplification of the canonical 
structure is also possible in Dirac's theory. One obtains the theory without any of the 
second-type constraints. The real and imaginary parts (in the Majorana representation) 
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of a bispinor V are interpreted as new canonical variables. The advantage of such a 
division has been pointed out by J. Schwinger [9], who also analyzed some physical 
interpretations of this trick. However, the approach presented here gives a new insight 
into Schwinger's ideas. The division of variables into 'configurations' and 'momenta' 
enables a variational formulation of Dirac's theory. It is interesting to note that due to 
the linearity assumption, one obtains a unique (up to gauge) division of W. 

2. Notation 

Let us denote by (M, g) the spacetime - a four-dimeiasional, smooth manifold M with 
a metric tensor g. The signature of g is ( + ,  , , - ) .  Nonholonomic (tetrad) 
coordinates are denoted by a, b, c . . . .  and the holonomic coordinates by 2,/~, v, . . . .  
{ea}o 3 is a field of orthonormal tetrads on M. Partial differentiation is denoted by ~ and 
covariant differentiation by V. A section of the bispinor bundle S (with the fibre 
isomorphic C 4) is called a bispinor field ~ .  Dirac matrices are denoted by 7 a and 
7ab : ~. 1 a ])b ~b ~(7 _ ~a). A complex conjugate of h is denoted by h*, a transposition of h 
by h t, h + := h*' is a Hermitian conjugate ofh. Matrices A, B, C are assumed to satisfy 
the conditions 

A 7"A - 1 = 7a + and A = A + , 

B T ' ~ B - I = - 7  at and B = - B  t ,  (4) 

C - 1 7 " C =  - 7  a* and C - 1 = C *  

(compare [ 1 ]). 
We work in the system of units where h = c = 1 and the Einstein summations 

convention is used everywhere. 

3. Construction of Configurations Variables 

Lagrangian L is a function ~f  a bispinor field and its derivatives qJu : = 0~, q< The Dirac 
We use the following notation derive~ from the theory of analytical functions 

OL OL 3L - -  OL 
d L = : - -  d T + d ~ - - +  d q ~ + d ~ u  

Oq' ~ OqJu ~ ' 

where, as usual, q~ := T +A. More precisely, we should write 

0L 
dUmA 

A OudA 

(where kIJ A are coordinates of W) instead of (dL/aW) dW. 

We shall follow the formalism of symplectic relations proposed in [7]. If 
0 ~' : --- b ~ dW + dq~p ~' then the equation dL = ~ 0 r is equivalent to the Euler-Lagrange 
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equations 

OL OL pU:- _ , ~u:= 

OL OL 
(5) 

Following [7], we define a symplectic structure in the space of Cauchy data; i.e., the 
space of field sections (q~, pU) on a fixed hypersurface E: 

: = f z  dO~' | dn~,, cO ~ 

where we denote by dn~, an oriented surface element on Z. As usual, any physical 
quantity f on Z determines a vector field Xfby  the equality d f  =: X f ~  off. The Poisson 
bracket of two smooth quantities f g on ~ is given by 

{f, g}~ := Xf(g). (6) 

The explicit form of the Lagrangian L for Dirac's theory is 

where ~,~' : = e~ 7" and V~, qJ denotes a covariant derivative in the spinor bundle S: 

VuV:=  O.qJ - co.b. ~, 'bv,  COab~,:= �88 eb), 

where 7 u denotes a metric connection on M; cf. [2]. The Euler-Lagrange equations (5) 
now have the form 

i 
P~' = - - x/~ ?" V (Va) 

2 

Hence we obtain the Dirac equation 

i? ~V~W - mW = O. (8) 

Formula (Va) defines second-type constraints in a phase space; see [5]. Notice that on 
a constraints space we have 

o9":= d0" = i x / - g d ~ ?  u A d ~ .  (9) 

Let us consider the charge conjugation operator if(W):= C~g * (C is defined by 
formula (4)) and its eigenspaces corresponding to + 1 eigenvalue 

c •  : =  e s ;  = + 
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A spinor bundle S is the sum of subbundles C+ and C .  Now 

~P = q + ip (10) 

where 

1 1 
q := 2 (qj + c~(qj)), p : =  ~ (qJ _ cg(~)), 

and formula (9) reads as 

o9 ~' = 2x / / - -gdp tB7  u A dq (11) 

and, therefore, the Poisson brackets of the q variables vanish on every hypersurfaee Z 
in M: {qa, qs},~ = 0. This observation motivates the choice of Q := C+ (the space 
parametrized by variables q = (qa)) as a new configuration space. 

The new momenta p~' can be found from the canonical form of ~ on Q, i.e., 

o9 u = d(p ~" dq) = d p  "t A dq.  

So, we have the equality 

de l~t A dq = 2 ~ dptB7 ~ A dq.  

This identity implies that new momenta p~' conjugate to configurations q are equal, 

p ,  = 2 , / - ~  B~,p . (12) 

Hence, variables p parametrize the space of momenta. 

4. The Noninteracting, Half-spin Particle Case 

It is seen after simple computations that the Dirac equation (8) in (q, p) variables (i.e., 
when q~ is given by (10)) has the-form 

i7 ~' 7~,q - mq = 0 ,  (13a) 

i7 u 7up - mp = 0.  (13b) 

Equation (13a) implies that the new theory based on q variables as configurations has 
Lagrangian constraints. 

T H E O R E M  1. The theory of the noninteraeting half-spin particle is a theory obtained from 
the Lagrangian which vanishes on the Lagrangian constraints (I 3 a ). By using the multipliers 
p, L can be written as follows 

L = 2 x / ~  ptB(Tt~ 7~,q + imq). (14) 

A variation of L on constraints (13a)gives (13b). A bispinor q/describing theparticle is now 
given by (10). 

Proof It is sufficient to show that a variation of Lagrangian (14) leads to (13b), but 
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notice that 

1 ~L _ x / ~  ptB(  im + Y~ ~ab CO,b~, ) _ ~u(xf----g ptB7~) = O. 
2 bq 

This easily implies that 

V u ( x / ~  Y~'P) + x~ ~ g  imp = O. 

Due to V~, ~' = 0 (see [2]) we have V~' 7~,p + imp = O. 

ANDRZEJ JAKUBIEC 

[] 

5. The Half-spin, Charged Particle Case 

A bispinor field q~ which describes a half-spin, charged particle fulfils the equation 

i(7~' 7u~g + ieA~,Tu~P) = m~P, (15) 

where e denotes the electric charge of a particle and (A~,) is the potential of an external 
electromagnetic field. The above equation in (q, p) variables takes the form 

7 ~' 7~,q - eAuT~'p + imq = 0 (16a) 

7 ~' V~,p + eA~,7~'q + imp = 0. (16b) 

Let us denote 

p (q) : -  eA~'7~' (TVVvq + imq) (17) 
A 2 

where we have assumed that A 2 := gU"A~,A,, # O. 
It is implied by (16a) that in an electromagnetic gauge with A z = 0, one deals with 

the Lagrangian constraints 

A~, 7~(? v V~q + imq) = O. 

Correspondingly, the momentum conjugate to q is not uniquely determined by q and its 
derivatives. 

THEOREM 2. A theory of the charged, half-spin particle interacting with an external 
electromagnetic field can be obtained from the Lagrangian 

[ 1 ] 
L s = - e ~ / ~ . , t  v q'BT~q + ~ (Ta V,tq + imq)tBTV(yu Vuq + imq) . (18) 

A variation of this Lagrangian with respect to q variables leads to four (real) second-rank 

equations 

?uV~,p + eAuT" q + imp = 0. (19) 

I f  q satisfies (19), then a bispinor q? := q + ip(q) describes the particle, i.e., satisfies 
Equation (15). 
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Proof. We have 

p~' - OLs - 2 e x/ /~A~TmBT~(Ta XT~q + imq) 
Oqt A z 

e ~_gA~BT~,  7~(7 ~ Va q + imq) = 2 ~ / - g  BT~'p =2A- ~ 

(compare formula (12)) and 

Oqt 

=-2ex / - -gA~{BTvq+l [ -oo~bu(7uTab) t+ imlB(TaVxq+imq)}A  2 

= - 2 ~ B(eA vyVq - COab~, 7 ab 7~'ff + imp). 

Hence, 

7 ~ , ( x / ~  ~I'13) + v/-~(eA~, 7~'q - (-Oabl, t ) )ab )) l ' t~  -[- imp) = O, 

which easily transforms to 

V , ( ~ S g  ?~'/~) + x/ -g(eAv?~q + im])) = 0 

and 
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7 ~' V~,p + eA~ 7~'q + imp = 0. 

After observing that definition (17) is equivalent to 

?f' V ~,q + imq - eA~, 7~'p = O, 

we see that the bispinor u? = q + ip fulfils Equation (16) and, thus, also (15). [] 

As is known, Lagrangian (1) and Equation (15) are invariant with respect to the 
electromagnetic gauge 

u?' = q~ e-'~~ A~,=A~,+eO~,q~. 

The above transformation has the following folTm in (q, p) variables 
J 

q '=qcosq~+psinq~,  p ' =  - q  sincp ~ p cosq~, 

and A~ transforms as above. 
Of course, Equations (16) are invariant with respect to this transformation, but now 

it is a transformation of the entire phase space and not of the configuration space. It 
is possible to consider this transformation as being reduced to the velocity space or to 
exactly the space of the jets of q: 

q '=qcosq~+psinq~,  p ' = e  tt'~)~t~A '2 (TvTvq'+imq') ,  A~; =A~ ,+e~u~ .  
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But now Lagrangian (18) is not invariant with respect to such a transformation. 
This situation is similar to that in the mechanical example from the Introduction. The 

Hamiltonian theory of the oscillator is invariant with respect to gauge of the first type: 

x' = x cos ~p + y sin ~p, 

y '  = - x  sincp + y cos~p. 

Of course, we have H(x',  y ')  -- H(x, y). 
It is obvious that the standard Lagrangian theory of the harmonic oscillator is not 

invariant with respect to the gauge 

x' = xcos~p + 5c sin~p, 

but the invariance of the Hamiltonian theory implies an invariance of the Lagrangian 
theory with the unusual Lagrangian (2), which is defined on the phase space. 

The invariance of the standard Dirac theory in the Lagrangian approach is closely 
connected with the invariance of the new formulation of Dirac's theory in the Hamilton 
approach. The standard Dirac Lagrangian is more a Hamiltonian than a Lagrangian. 

6. The Theory of the Self-interacting Dirac and Maxwell Fields Case 

Take the following equations 

iy~'(V~, + ieA~,) q? = m~F (20a) 

O ~ ( x / ~  g~agWfa~) = e ~ ~7v~F (20b) 

where f ,v  = 0~,Av- 3~A~,. 

THEOREM 3. The Lagrangian 

L,, := L, + L, ,  (21) 

where L, is given by (18) and L,  = - �88 x /  - g gU~ g~" fua f  ~,, leads to the following equations 

~ 7up + eA t vUq + imp = 0,  (22a) 

au(x/ - g g~'~g~fx,) = e x / -~(qtBv~ q + p' BTVp) . (22b) 

The above equations are equivalent to (20) with ~P := q + ip. 
Proof Due to Theorem 2, Equation (22a) is satisfied. Let us check to see if 

. . . .  e x / ~ ( q ' B y ' q  + ptBy~p). 
~A~ 

Denote K : =  yu 7u q + imq and notice that 

~ = e ~ qtBTV q A 2 KtBy~K-,4- ~ A~AuKtBT~'K 
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and 

1 
ptB?Vfl = A4 A x A , , K t B y ~ ? ~ ?  " K  - _  

1 
2 AxA~K, By~K + __ K,B?VK" 

A 4 A 2 

Thus, (22b) holds. 
From the equality ~F = (q' - ip')B, we have 

q~TvW = qtB?Vq + ptB?~p + i(qtB?~p -p'B ?~q). 

But 

q'B?Vp - p'B?Vq = 0 

and, hence, 

j~ = e , v / / ~  ~ ? ~  = e ~ / -  g (qtBT~q + p'B?~p). 

This identity shows that Equations (20b) and (22b) are equivalent. 

In this way we again 
constraints. 

[] 

obtained the theory of bispinor fields without second-type 

7. Uniqueness of the Construction 

Now the following problem arises" does there exist a possibility of choosing another 
configuration space leading to a bispinor theory without second-type constraints? If so, 
then the new configuration variables (q~) should have vanishing Poisson brackets on 
every hypersurface E in M: 

-- 0 .  

But from formula (6) we have 

0 = {qA, q'B}~ = (Xq:~;dq'B> 

= = 

The equality means that vectors {Xq;, }4 form a four-dimensional, isotropic subspace for 
all forms {o:}3: 

VA, B 

where {0~'}3o are given by formula (11). 

LEMMA 1. The intersection of the isotropic subspaces of {~OU}o 3/s spanned by vectors 

O 
Xqa = - sin~o - -  + cos~o A = 1, 2, 3,4 

Proof The proof will be given in the Majorana representation (see [1]). In this 
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representation bispinors q and p are real; q, p ~ R 4. Let us denote by {X A } linearly 
independent vectors 

8 
XA=~A ~qq+~n ~ ,  A =  1 ,2 ,3 ,4 ,  

where ~a, flA e R4. 
We shall look for X a satisfying the condition 

VA, B Va (XA, X B ; c ~ ' ) = O .  

Hence, 

VA, B Va o~tAnTa[~B -- o~tBn~a[~ A = 0 .  (23) 

Let us assume that bispinors ~ ,  ~2 are linearly independent. One easily checks that 
condition (23) is SU(2)-invariant. Hence, the bispinors (g. ~a, g" fla) (where g e SU(2)) 
also satisfy (23). Thus, we can work with 

0 a 
~1 = and ~2 = , where a 2 + b 2 + c 2 :/: 0 .  

0 

0 

If ~3 is now linearly dependent from ~1, ~2 we can put ~3 --- 0 without loss of generality. 
Now, from (23) we have 

Va O~tlBTa[~3=O and 0~'2Br 

Hence t3 vanishes and also the vector X 3 = 0. We obtain a contradiction, hence 
bispinors ~1, ~2, ~3 are linearly independent. Similarly, we can show that ~4 is linearly 
independent from ~1, ~2, ~3 and thus we can choose these bispinors in the form 

After easy computations, we finally obtain from (23) 

3 ~ e  R , VA flA = #O~A " 

This completes the proof. 

0~ 4 = 

[] 

Dirac's theory with a bispinor W as a configuration is linear with respect to the bispinor 
field qJ. If we do not want to lose the linearity of the new theories, we must assume that 
new variables q' are linearly dependent on the bispinor u?. Under this assumption we 
have 
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T H E O R E M  4. The only choice of new configurations is given by 

q' = g" (q cos q~ + p sin ~0), where q~ ~ R, g ~ Gl(4, R) .  

Proof. New configuration variables 

qA = ~ (2~qa + I~Pa) 
B 

should vanish on vectors {Xa}4: 

VA, B Xs(qA ) = 0 .  

The only solutions of these equations are given in the thesis of the theorem. [] 

It can be seen that the only nontrivial freedom choice for new configurations 

q' = q cos ~0 + p sin q~ (24) 

is related to the following bispinor field gauge 

~ t J  ' = ~J~ e - iU,  . 

In Dirac's theory without electromagnetic interactions variable q~ ~ R 1 is constant and 
in the Dirac-Maxwell theory variable ~0 is a real function on spacetime M. Simulta- 
neously with the change of configurations given by (24), the electromagnetic potential 
must be changed 

t A~, = Au + e ~, q~. 

8. Remarks 

1. The variable q may be represented by a spinor field x e C 2. 
It is known (see [8]) that from a geometrical point of view a spinor field ~ can be 

described as a simple, null two-vector XUV~ A 2 TM) called a flag and it is possible to 
express Lagrangian (21) only in terms of the flag (XU0 and potential (Au). A formulation 
of the Maxwell-Dirac theory in this language will be published elsewhere. 

2. The problem of describing the interaction between gravitational, spinor, and 
electromagnetic fields in the framework of the unified theory of gravitation and electro- 
magnetism (compare [4]) is investigated in a forthcoming paper. In the case of the 
metric, torsionless connection, the proposed theory is equivalent to the standard one. 
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