Skip to main content
Log in

Heat damage in tree seedlings and its prevention

  • Review Paper
  • Published:
New Forests Aims and scope Submit manuscript

Abstract

Tree seedlings start to suffer stem damage or tissue death when the temperature at the soil surface reaches approximately 52°C. Seedling mortality rate accelerates as temperatures increase. Resistance to heat damage increases with size as the ability of a seedling to shade its base increase. Small newly germinated seedlings are at risk in late spring and early summer, while larger nursery-grown seedlings are at risk in mid to late summer, especially on soils with low heat capacity or conductivity, or with surfaces that are dry, dark colored or covered with organic matter. Heat damage to natural and planted seedlings usually occurs on flat or south-facing sites in regions with hot dry summers and clear skies, but can also occur in wetter regions under dry clear conditions. Shading only the basal portion of the stem appears to be as effective in preventing heat damage as shadingthe entire stem and some foliage, which can also reduce transpiration. Overhead shade and shade from live plants can reduce growth and survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, R. S., Ritchey, J. R. and Todd, W. G. 1966. Artificial shade improves survival of planted Douglas-fir and white fir seedlings. California Div. Forestry, State Forest Notes 28. 11 p.

  • Ahlgren, C. E. 1981. Seventeen-year changes in climatic elements following prescribed burning. Forest Sci. 27: 33–39.

    Google Scholar 

  • Ahlgren, I. F. and Ahlgren C. E. 1960. Ecological effects of forest fires. Bot. Rev. 26: 483–533.

    Google Scholar 

  • Alexandrov, V. Y. 1964. Cytophysical and cytoecological investigations of heat resistance of plant cells toward the action of high and low temperature. Quart. Rev. Biol. 37: 35–77.

    Google Scholar 

  • Baer, N., Ronco, F. and Barney, C. W. 1977. Effects of watering, shading, and size of stock on survival of planted lodgepole pine. USDA Forest Serv., Rocky Mountain Forest and Range Exp. Sta., Ft. Collins, Colorado. Res. Note RM-347. 4 p.

    Google Scholar 

  • Baker, F. S. 1929. Effect of extremely high temperatures on coniferous reproduction. J. Forestry 27: 949–975.

    Google Scholar 

  • Bates, C. G. 1926. Some relations of plant ecology to silvicultural practice. Ecology 7: 496–480.

    Google Scholar 

  • Bates, C. and Roeser, J. Jr. 1924. Relative resistance of tree seedlings to heat. USDA Dep. Bull. 1263. 16 p.

  • Bigelow, W. D. 1921. The logarithmic nature of thermal death curves. J. Infect. Dis. 29: 528–536.

    Google Scholar 

  • Bjor, K. 1972. Micro-temperature profiles in the vegetation and soil surface layers on uncovered and twig covered plots. Meddr. norske Skogfors Ves. 30: 203–218.

    Google Scholar 

  • Buffo, J., Fritschen, L. J. and Murphy, J. L. 1972. Direct solar radiation on various slopes from 0 to 60 degrees north latitude. USDA Forest Serv., Pacific NW Forest and Range Exp. Sta., Portland, Oregon. Res. Pap. PNW-142. 74 p.

    Google Scholar 

  • Chang, J. 1968. Climate and Agriculture — An Ecological Survey. Aldine Publishing Co., Chicago. 304 p.

    Google Scholar 

  • Childs, S. W., Holbo, H. R. and Miller, E. L. 1985. Shadecard and shelterwood modification of the soil temperature environment. Soil Sci. Soc. Am. J. 49: 1018–1023.

    Google Scholar 

  • Childs, S. W. and Flint, L. E. 1987. Effect of shadecards, shelterwoods, and clearcuts on temperature and moisture environments. Forest Ecol. Manage. 18: 205–217.

    Google Scholar 

  • Cleary, B. D., Greaves, R. D. and Hermann, R. K. 1978. Regenerating Oregon's Forests. Oregon State Univ. Ext. Serv., Corvallis. 286 p.

    Google Scholar 

  • Cochran, P. H. 1963. First-year development of conifers on subsurface and subsoil horizons. M.S. thesis. Oregon State Univ., Corvallis.

  • Cochran, P. H. 1969. Thermal properties and surface temperatures of seedbeds. USDA Forest Serv. Pacific NW Forest and Range Exp. Sta., Portland, Oregon. 19 p.

    Google Scholar 

  • Culm, H. H. 1926. The effect of transpiration and environmental factors on leaf temperature. Am. J. Bot. 13: 194–223.

    Google Scholar 

  • Curtis, O. F. 1936. Leaf temperatures and the cooling of leaves by radiation. Plant Physiol. 11: 343–364.

    Google Scholar 

  • Devlin, R. J. 1985. Shelterwood cutting in modern multiple-use management. pp. 3–8. In: Mann J. W. and Tesch S. D. (Eds) Proceedings of a Workshop on the Shelterwood Management System, May 13–14, 1985, Grants Pass, Oregon. Forest Research Laboratory, Oregon State Univ., Corvallis.

    Google Scholar 

  • Dunlap, J. M. and Helms, J. A. 1993. First-year growth of planted Douglas-fir and white fir seedlings under different shelterwood regimes in California. Forest Ecol. Manage. 5: 255–268.

    Google Scholar 

  • Flint, L. E. 1985. Effects of soil surface shading, mulching and vegetation controls on Douglas-fir seedling growth and microsite water partitioning. M.S. thesis. Oregon State Univ., Corvallis. 57 p.

  • Flint, A. L. and Childs, S. W. 1987a Calculation of solar radiation in mountainous terrain. Agric. Forest Meteorol. 40: 233–249.

    Google Scholar 

  • Flint, A. L. and Childs, S. W. 1987b. The effect of surrounding topography on receipt of solar radiation. pp. 339–347. In: Forest Hydrology and Watershed Management. Proceedings of the Vancouver Symposium, August 1987. IAHS Publ. 167.

  • Flint, L. E. and Childs, S. W. 1987c. Effect of shading, mulching, and vegetation control on Douglas-fir seedling growth and soil water supply. Forest Ecol. Manage. 18: 189–203.

    Google Scholar 

  • Fowells, H. A. 1965. Silvics of forest trees of the United States. USDA Forest Service, Washington, D.C. Ag. Handbook 271. 762 p.

    Google Scholar 

  • Fowells, H. A. and Stark, N. B. 1965. Natural regeneration in relation to environment in the mixed conifer forest type of California. USDA Forest Serv. Res. Paper PSW-24. 19 p.

  • Frank, E. C. and Lee, R. 1966. Potential solarbeam radiation on slopes: tables for 30° and 50° latitude. USDA Forest Serv., Rocky Mountain Forest and Range Exp. Sta., Ft. Collins, Colorado. Res. Pap. RM-18. 116 p.

    Google Scholar 

  • Gates, D. M. 1980. Biophysical ecology. Springer-Verlag. New York. 611 p.

    Google Scholar 

  • Geiger, R. 1950. The Climate Near the Ground. Harvard University Press, Cambridge, MA. 482 p.

    Google Scholar 

  • Gordon, D. T. 1970. Shade improves survival rate of outplanted 2–0 red fir seedlings. USDA Forest Serv., Pacific SW Forest and Range Exp. Sta., Berkeley, California. Res. Note PSW-210. 4 p.

    Google Scholar 

  • Haig, I. T., Davis, K. P. and Weidmann, R. H. 1941. Natural regeneration of the western white pine type. USDA Tech. Bull. 767. 99 p.

  • Hallin, W. E. 1968. Soil surface temperatures on cutovers in southwest Oregon. USDA Forest Serv., Pacific NW Forest and Range Exp. Sta., Portland, Oregon. Res. Note PNW-78. 17 p.

    Google Scholar 

  • Harrington, M. G. and Kelsey, R. G. 1979. Influences of some environmental factors on initial establishment and growth of ponderosa pine seedlings. USDA Forest Serv., Intermountain Forest and Range Exp. Sta., Ogden, Utah. Res. Pap. INT-230. 26 p.

    Google Scholar 

  • Harris, S. 1983. Catching rays. 80 Micro. October: 256–261.

  • Hartley, C. 1918. Stem lesions caused by excessive heat. J. Agric. Res. 14: 595–604.

    Google Scholar 

  • Helgerson, O. T. 1988. Live versus dead shade — what's best for conifer seedlings. pp. 157–167. In: Tomaschevski, J. (Ed) Proceedings of the 1987 Forest Vegetation Management Conference, November 3–5, 1987, Redding, California.

  • Helgerson, O. T. and Bunker, J. D. 1985. Alternate types of artificial shade increase survival of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings in clearcuts. Tree Plant. Notes 36(4): 7–12.

    Google Scholar 

  • Helgerson, O. T., Wearstler, K. A. and Bruckner, W. K. 1982. Survival of natural and planted seedlings under a shelterwood in southwest Oregon. Forest Research Laboratory, Oregon State Univ., Corvallis. Res. Note 69. 4 p.

    Google Scholar 

  • Helms, J. A. 1976. Factors influencing net photosynthesis in trees: an ecological viewpoint. pp. 55–78. In: Cannell M. G. R. and Last F. T. (Eds) Tree Physiology and Yield Improvement. Academic Press, New York.

    Google Scholar 

  • Hermann, R. K. and Chilcote, W. W. 1965. Effect of seedbeds on germination and survival of Douglas-fir. Forest Research Laboratory. Oregon State Univ., Corvallis. Res. Paper 4. 27 p.

    Google Scholar 

  • Heth, D. and Kramer, P. J. 1975. Drought tolerance of pine seedlings under various climatic conditions. Forest Sci. 21: 72–82.

    Google Scholar 

  • Hillel, D. 1971. Soil and Water Physical Principles and Processes. Academic Press, New York. 288 p.

    Google Scholar 

  • Hobbs, S. D. 1982. Performance of artificially shaded container-grown Douglas-fir seedlings on skeletal soils. Forest Research Laboratory, Oregon State Univ., Corvallis. Res. Note 71. 5 p.

    Google Scholar 

  • Hobbs, S. D. 1984. The influence of species and stocktype selection on stand establishment: an ecophysiological perspective. pp. 179–224. In: Duryea M. L. and Brown G. N. (Eds) Seedling Physiology and Reforestation Success. Martinus Nijhoff/Dr W. Junk Publishers, Boston.

    Google Scholar 

  • Hobbs, S. D. and Owston, P. W. 1985. Plant competition associated with Douglas-fir shelterwood management in southwest Oregon. pp. 17–24. In: Mann J. W. and Tesch S. D. (Eds) Proceedings of a Workshop on the Shelterwood Management System, May 13–14, 1985, Grants Pass, Oregon. Forest Research Laboratory, Oregon State Univ., Corvallis.

    Google Scholar 

  • Holbo, H. R. and Childs, S. W. 1987. Summertime radiation balance of clearcut and shelterwood slopes in southwest Oregon. Forest Sci. 33: 504–516.

    Google Scholar 

  • Holbo, H. R., Childs, S. W. and McNabb, D. H. 1984. Solar radiation at seedling sites below partial canopies. Forest Ecol. Manage. 10: 115–124.

    Google Scholar 

  • Hungerford, R. D. 1980. Microenvironmental response to harvesting and residue management. pp. 37–73. In: Environmental Consequences of Timber Harvesting in Rocky Mountain Coniferous Forests. USDA Forest Serv., Intermountain Forest and Range Exp. Sta., Ogden, Utah. Gen. Tech. Rep. INT-90.

    Google Scholar 

  • Hungerford, R. D. and Babbitt, R. E. 1987. Overstory removal and residue treatments affect soil surface, air and soil temperature: implications for seedling survival. USDA Forest Serv., Intermountain Forest and Range Exp. Sta., Ogden, Utah. Research Paper INT-377. 19 p.

    Google Scholar 

  • Isaac, L. A. 1922. Seedling survival on burned and unburned surfaces. J. Forestry 28: 569–571.

    Google Scholar 

  • Isaac, L. A. 1929. The effect of fire on Douglas-fir slash. Pacific NW Forest and Range Exp. Sta., Portland, Oregon Forest Res. Notes No. 3. 11 p.

    Google Scholar 

  • Isaac, L. A. 1938. Factors affecting establishment of Douglas-fir seedlings. USDA, Washington, D.C. Circ. 486. 45 p.

    Google Scholar 

  • Jemison, G. M. 1934. The significance of the effect of stand density upon the weather beneath the canopy. J. Forestry 32: 446–451.

    Google Scholar 

  • Keijzer, S. de and Hermann, R. K. 1966. Effect of environment on heat tolerance of Douglas-fir seedlings. Forest Sci. 12: 211–212.

    Google Scholar 

  • Kimball, G. W. and Carter, E. E. 1913. Influence of shade and other factors on plantations. Forestry Q. 11: 176–184.

    Google Scholar 

  • Koroleff, A. 1954. Leaf litter as a killer. J. Forestry 52: 178–182.

    Google Scholar 

  • Korstian, C. F. 1927. Factors controlling germination and early survival in oaks. Yale Univ., New Haven, Connecticut. School of Forestry Bull. 19. 115 p.

    Google Scholar 

  • Korstian, C. F. and Fetherolf, N. J. 1921. Control of stem girdle of spruce transplants caused by excessive heat. Phytopathology 11: 485–490.

    Google Scholar 

  • Kozlowski, T. T. 1976. Water relations and tree improvement. pp. 307–328. In: Cannell M. G. R. and Last F. T. (Eds) Tree Physiology and Yield Improvement. Academic Press, New York.

    Google Scholar 

  • Krauch, H. 1936. Some factors affecting Douglas-fir reproduction in the southwest. J. Forestry 34: 601–608.

    Google Scholar 

  • Lavender, D. P. 1958. Effect of ground cover on seedling germination and survival. State of Oregon, Forest Lands Research Center, Corvallis. Res. Note 38. 32 p.

    Google Scholar 

  • Levitt, J. 1972. Responses of plants to environmental stresses. Academic Press. New York. 697 p.

    Google Scholar 

  • Lewis, R., Ritter, C. J. and Wert, S. 1978. Use of artificial shade to increase survival of Douglas-fir in the Roseburg area. USDI, Bureau of Land Management, Tech. Note TN-32. 8 p.

  • Li, T-T. 1926. Soil temperature as influenced by forest cover. Yale Univ., New Haven, Connecticut. School of Forestry Bull. 18. 92 p.

    Google Scholar 

  • Linteau, A. 1948. Factors affecting germination and early survival of yellow birch (Betula lutea Michx.) in Quebec. For. Chron. 24: 27–88.

    Google Scholar 

  • Livingston, N. J. and Black T. A. 1987. Water stress and survival of three species of conifer seedlings planted on a high elevation south-facing clearcut. Can. J. For. Res. 17: 1115–1123.

    Google Scholar 

  • Lorenz, R. W. 1939. High temperature tolerance of forest trees. Univ. Minnesota Agric. Exp. Sta. Tech. Bull. 141. 25 p.

  • Maguire, W. P. 1955. Radiation, surface temperature, and seedling survival. Forest Sci. 1: 277–285.

    Google Scholar 

  • McKell, C. M. and Finnis, J. M. 1957. Control of soil moisture depletion through use of 2, 4-D on a mustard seed crop during Douglas-fir seedling establishment. For. Sci. 3: 329–335.

    Google Scholar 

  • Minore, D. 1971. Shade benefits Douglas-fir in southwestern Oregon cutover area. Tree Plant. Notes 22(1): 22–23.

    Google Scholar 

  • Minore, D. 1985. Effects of madrone, chinkapin, and tanoak sprouts on light intensity, soil moisture, and soil temperature. Can. J. Forest Res. 16: 654–658.

    Google Scholar 

  • Monteith, J. L. 1981. Coupling of plants to the atmosphere. pp. 1–29. In: Grace J., Ford E. D. and Jarvis P. G. (Eds) Plants and Their Atmospheric Environment. Blackwell Scientific Publishing, St. Louis, Missouri.

    Google Scholar 

  • Moulopoulos, C. 1947. High summer temperatures and reforestation technique in hot and dry countries. J. Forestry 45: 884–893.

    Google Scholar 

  • Münch, E. 1913. Hitzeschaden an waldpflanzen. Naturwiss. Z. Forst- Landwirtsch. 11(12): 557–562.

    Google Scholar 

  • Münch, E. 1914. Nochmals hitzeschaden an waldpflanzen. Naturwiss. Z. Forst- Landwirtsch. 12(4): 169–188.

    Google Scholar 

  • Münch, E. 1915. Beobachtungen uber erhitzung der bodenoberflache in jahre, 1914. Naturwiss. Z. Forst- Landwirtsch. 13(6/7): 249–260.

    Google Scholar 

  • Nobel, P. S. 1974. Introduction to Biophysical Plant Physiology. W.H. Freeman and Co., San Francisco. 488 p.

    Google Scholar 

  • Pearson, G. A. 1935. Some observations on the reaction of pine seedlings to shade. Ecology 17: 270–276.

    Google Scholar 

  • Pearson, G. A. 1940. Shade effects in ponderosa pine. J. Forestry 38: 778–780.

    Google Scholar 

  • Pearson, G. A. 1950. Management of ponderosa pine in the southwest. USDA Agric. Mongr. 6. 218 p.

  • Petersen, G. J. 1982. The effects of artificial shade on seedling survival on western Cascade harsh sites. Tree Plant. Notes 33(4): 20–23.

    Google Scholar 

  • Roman, E. 1911. Bodenkunde. 699 p.

  • Redmond, D. R. 1955. Studies in forest pathology XV. Rootlets, mycorrhiza, and soil temperatures in relation to birch dieback. Can. J. Bot. 33: 595–627.

    Google Scholar 

  • Richardson, J. A. 1958. The effect of temperature on the growth of plants on pit heaps. J. Ecology 46: 537–546.

    Google Scholar 

  • Roeser, J. Jr., 1932. Transpiration capacity of coniferous seedlings and the problems of heat injury. J. Forestry 30:381–395.

    Google Scholar 

  • Rosenberg, N. J. 1974. Microclimate: The biological Environment. Wiley Interscience, New York. 315 p.

    Google Scholar 

  • Rotty, R. 1958. Three rocks for better planting survival. Tree Plant. Notes. 33: 3–5.

    Google Scholar 

  • Rudolph, P. O. 1939. Why forest plantations fail. J. Forestry 37: 377–383.

    Google Scholar 

  • Running, S. W. 1976. Environmental control of leaf water conductance in conifers. Can. J. Forest Res. 6: 104–112.

    Google Scholar 

  • Running, S. W. 1982. Insolation and heat effects on tree seedlings on nearly cleared sites. p. 87–92. In: Baumgartner D. M., compiler and editor, “Site preparation and fuels management on steep terrain,” proceedings of a symposium held February 15, 16, and 17, 1982, Spokane, WA. Washington State Univ., Cooperative Extension, Pullman, WA.

    Google Scholar 

  • Ryker, R. A. and Potter D. R. 1970. Shade increases first-year survival of Douglas-fir seedlings. USDA Forest Serv., Intermountain Forest and Range Exp. Sta., Ogden, Utah. Res. Note INT-119. 6 p.

    Google Scholar 

  • Satterlund, D. R. 1972. Wildland Watershed Management. Ronald Press, New York. 370 p.

    Google Scholar 

  • Schramm, J. E. 1966. Plant colonization studies on black wastes from anthracite mining in Pennsylvania. Trans. Am. Philos. Soc. 56(1): 1–194.

    Google Scholar 

  • Schubert, G. H. and Adams R. S. 1971. Reforestation practices for conifers in California. State of California, The Resources Agency, Dep. of Conservation, Division of Forestry, Sacramento. 359 p.

    Google Scholar 

  • Seidel, K. W. 1986. Tolerance of seedlings of ponderosa pine, Douglas-fir, ground fir, and Engelmann spruce for high temperatures. Northwest Sci. 60: 1–7.

    Google Scholar 

  • Shearer, R. C. 1967. Insolation limits initial establishment of western larch seedlings. USDA Forest Serv., Intermountain Forest and Range Exp. Sta., Ogden, Utah. Res. Note INT-64. 8 pp.

    Google Scholar 

  • Shirley, H. L. 1936. Lethal high temperatures for conifers and the cooling effects of transpiration. J. Agric. Res. 53: 239–253.

    Google Scholar 

  • Show, S. B. 1924. Some results of experimental forest planting in northern California. Ecology 1: 83–94.

    Google Scholar 

  • Silen, R. R. 1960. Lethal surface temperatures and their interpretation for Douglas-fir. Ph.D. thesis. Oregon State Univ., Corvallis.

  • Sims, H. P. 1976. The effect of prescribed burning on some physical soil properties of jack pine sites in southwestern Manitoba. Can.J.Forest Res. 6: 58–68.

    Google Scholar 

  • Smith, D. M. 1951. The influence of seedbed conditions on the regeneration of eastern white pine. Connecticut Agricultural Experiment Station, New Haven. Bulletin 545. 61 p.

    Google Scholar 

  • Smith, F. H. and Silen R. R. 1963. Anatomy of heat damaged Douglas-fir seedlings. Forest Sci. 9: 15–32.

    Google Scholar 

  • Sproat, A. W. 1930. Natural reproduction of ponderosa pine. J. Forestry 28: 334–337.

    Google Scholar 

  • Stathers, R. J. 1983. A study of soil temperature and seedling survival in a forest clearcut. M.S. thesis. Univ. British Columbia, Vancouver, B.C. 142 p.

  • Stathers, R. J., Black T. A. and Novak M. D. 1985. Modeling soil temperature and seedling survival in forest clearcuts using climate station data. Agric. For. Meteorol. 36: 153–164.

    Google Scholar 

  • Strothman, R. O. 1972. Douglas-fir in northern California: effects of shade on germination survival and growth. USDA Forest Serv., Pacific SW Forest and Range Exp. Sta., Berkeley, CA. Res. Pap. PSW-84. 10 p.

    Google Scholar 

  • Strothman, R. O. 1976. Douglas-fir seedlings planted by four methods ... results after 10 years. USDA Forest Serv., Pacific SW Forest and Range Exp. Sta., Berkeley, California. Res. Note PSW-310. 4 p.

    Google Scholar 

  • Tappeiner, J. C.II and Helms J. A. 1971. Natural regeneration of Douglas-fir and white fir on exposed sites in the Sierra Nevada of California. The American Midland Naturalist 86: 359–370.

    Google Scholar 

  • Tesch, S. D., Lysne D. H., Mann J. W. and Helgerson O. T. 1986a. Mortality of regeneration during skyline logging of a shelterwood overstory. J. Forestry 84(6): 49–50.

    Google Scholar 

  • Tesch, S. D., Lysne D. H., Mann J. W. and Helgerson O. T. 1986b. Damage to regeneration during shelterwood overstory removal on steep terrain: a case study. Forest Research Laboratory, Oregon State Univ., Corvallis. Res. Note 79. 7 p.

    Google Scholar 

  • Toumey, J. W. and Neethling E. J. 1924. Insolation, a factor in the natural regeneration of certain conifers. Yale Univ., New Haven, Connecticut. School of Forestry Bull. 11. 63 p.

    Google Scholar 

  • Vaartaja, O. 1949. High surface soil temperatures — on methods of investigation, and thermocouple observation on a wooded heath in the south of Finland. Oikos 1(1): 6–28.

    Google Scholar 

  • Vance, N. C. and Running S. W. 1985. Summer climatic influences on Pinus ponderosa planted on mined lands in eastern Montana. Reclamation and Revegetation Research 4: 129–143.

    Google Scholar 

  • Vanderwaal, J. A. 1982. Energy exchange of transplanted Douglas-fir seedlings on two cutover sites in southwestern Oregon. M.S. thesis. Oregon State Univ., Corvallis. 110 p.

  • Vanderwaal, J. A. 1983. Energy exchange of transplanted Douglas-fir seedlings on two cutover sites in southwest Oregon. pp. 214–215. In: Extended Abstracts, 6th Conference of Biometeorology and Aerobiology, April 25, 1983 and 6th Conference on Agriculture and Forest Meteorology, April 26–28, 1983. Ft. Collins, Colorado. The American Meteorological Society, Boston, Massachusetts.

    Google Scholar 

  • Vanderwaal, J. A. and Holbo, H. R. 1984. Needle-air temperature differences of Douglas-fir seedlings and relation to microclimate. Forest Sci. 30: 635–644.

    Google Scholar 

  • VanHaverbeke, D. F. 1984. Survival and height growth of Norway spruce in a southcentral Nebraska provenance trial. USDA Forest Serv., Rocky Mountain Forest and Range Exp. Sta., Ft. Collins, Colorado. Res. Note RM-439. 3 p.

    Google Scholar 

  • Waggoner, P. E., Miller, P. M. and DeRoos, H. C. 1960. Plastic mulching — principles and benefits. Connecticut Agric. Exp. Sta., New Haven. Bull. 634. 44 p.

    Google Scholar 

  • Wahlenberg, W. G. 1930. Effect of ceanothus brush on western yellow pine plantations in the northern Rocky Mountains. J. Agric. Res. 41: 601–612.

    Google Scholar 

  • Woodard, E. S. 1966. Effects of some transpiration retardants and shade on survival of Douglas-fir under drought conditions in the field. M.S. thesis. Oregon State Univ., Corvallis. 30 p.

  • Youngberg, C. T.1965. Silvicultural benefits from brush. In: Proc. Soc. Am. Foresters 1965. pp. 55–59.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helgerson, O.T. Heat damage in tree seedlings and its prevention. New Forest 3, 333–358 (1989). https://doi.org/10.1007/BF00030044

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00030044

Key words

Navigation