Skip to main content

Novel Design of Anode Flow Field in Proton Exchange Membrane Fuel Cell (PEMFC)

  • Conference paper
  • First Online:
IRC-SET 2018
  • 404 Accesses

Abstract

In this paper, the authors presented a few new design flow field in hope to further optimize the fuel flow distribution within the flow field. Fuel distribution in PEMFC plays a critical role in the current density, temperature distribution and water concentration. Moreover, the effects of the geometric parameters on the cell performance are assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Office of Energy Efficiency and Renewable Energy. (2018). Types of fuel cells. (Online) Available https://www.energy.gov/eere/fuelcells/types-fuel-cells. Retrieved March 26, 2018.

  2. Spiegel, C. (2007). Designing and building fuel cells.

    Google Scholar 

  3. David, S. W., Kenneth, W. D., & Danny, G. E. (1991). United States Patent, 4,988,583.

    Google Scholar 

  4. David, S. W., Kenneth, W. D., & Danny, G. E. (1992). United States Patent, 5,108,849.

    Google Scholar 

  5. Arvay, A., French, J., Wang, J. C., Peng, X. H., & Kannan, A. M. (2013). Nature inspired flow field designs for proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 38(9), 3717–3726.

    Article  CAS  Google Scholar 

  6. Linfield, K. W., & Mudry, R. G. (2008). Pros and cons of CFD and physical flow modeling.

    Google Scholar 

  7. Cheng, C. H., Lin, H. H., & Lai, G. J. (2007). Design for geometric parameters of PEM fuel cell by integrating computational fluid dynamics code with optimization method. Journal of Power Sources, 165(2), 803–813.

    Article  CAS  Google Scholar 

  8. Manso, A. P., Marzo, F. F., Barranco, J., Garikano, X., & Garmendia Mujika, M. (2012). Influence of geometric parameters of the flow fields on the performance of a PEM fuel cell. A review. International Journal of Hydrogen Energy, 37(20), 15256–15287.

    Google Scholar 

  9. Yoon, Y. G., Lee, W. Y., Park, G. G., Yang, T. H., & Kim, C. S. (2004). Effects of channel configurations of flow field plates on the performance of a PEMFC. Electrochimica Acta, 50(2–3 Special Issue), 709–712.

    Google Scholar 

  10. Wang, X., Zhang, X., Liu, T., Duan, Y.-Y., Yan, W.-M., & Lee, D.-J. (2010). Channel geometry effect for proton exchange membrane fuel cell with serpentine flow field using a three-dimensional two-phase model. Journal of Fuel Cell Science and Technology, 7(5), 051019/1–051019/9.

    Google Scholar 

  11. Jaruwasupant, N., & Khunatorn, Y. (2011). Effects of difference flow channel designs on proton exchange membrane fuel cell using 3-D Model. Energy Procedia, 9, 326–337.

    Article  CAS  Google Scholar 

  12. Ahmed, D. H., & Sung, H. J. (2006). Effects of channel geometrical configuration and shoulder width on PEMFC performance at high current density. Journal of Power Sources, 162(1), 327–339.

    Article  CAS  Google Scholar 

  13. Kumar, A., & Reddy, R. G. (2003). Effect of channel dimensions and shape in the flow-field distributor on the performance of polymer electrolyte membrane fuel cells. Journal of Power Sources, 113(1), 11–18.

    Article  CAS  Google Scholar 

  14. Lee, S., Jeong, H., Ahn, B., Lim, T., & Son, Y. (2008). Parametric study of the channel design at the bipolar plate in PEMFC performances. International Journal of Hydrogen Energy, 33(20), 5691–5696.

    Article  CAS  Google Scholar 

  15. Sun, W., Peppley, B. A., & Karan, K. (2005). Modeling the Influence of GDL and flow-field plate parameters on the reaction distribution in the PEMFC cathode catalyst layer. Journal of Power Sources, 144(1), 42–53.

    Article  CAS  Google Scholar 

  16. Yoon, Y. G., Lee, W. Y., Park, G. G., Yang, T. H., & Kim, C. S. (2005). Effects of channel and rib widths of flow field plates on the performance of a PEMFC. International Journal of Hydrogen Energy, 30(12), 1363–1366.

    Article  CAS  Google Scholar 

  17. Limjeerajarus, N., & Charoen-Amornkitt, P. (2015). Effect of different flow field designs and number of channels on performance of a small PEFC. International Journal of Hydrogen Energy, 40(22), 7144–7158.

    Article  CAS  Google Scholar 

  18. Jang, J. H., Yan, W. M., Li, H. Y., & Tsai, W. C. (2008). Three-dimensional numerical study on cell performance and transport phenomena of PEM fuel cells with conventional flow fields. International Journal of Hydrogen Energy, 33(1), 156–164.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Singapore Institute of Technology for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Cheng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Heng, X.Z., Wang, P.C., An, H., Liu, G.Q. (2019). Novel Design of Anode Flow Field in Proton Exchange Membrane Fuel Cell (PEMFC). In: Guo, H., Ren, H., Bandla, A. (eds) IRC-SET 2018. Springer, Singapore. https://doi.org/10.1007/978-981-32-9828-6_30

Download citation

Publish with us

Policies and ethics