Skip to main content

Novel Competitive Swarm Optimizer for Sampling-Based Image Matting Problem

  • Conference paper
  • First Online:
Smart Computing Paradigms: New Progresses and Challenges

Abstract

In this paper, a novel competitive swarm optimizer (NCSO) is presented for large-scale global optimization (LSGO) problems. The algorithm is basically motivated by the particle swarm optimizer (PSO) and competitive swarm optimizer (CSO) algorithms. Unlike PSO, CSO neither recalls the personal best position nor global best position to update the elements. In CSO, a pairwise competition tool was presented, where the element that fails the competition are updated by learning from the winner and the winner particles are just delivered to the succeeding generation. The suggested algorithm informs the winner element by an added novel scheme to increase the solution superiority. The algorithm has been accomplished on high-dimensional CEC2008 benchmark problems and sampling-based image matting problem. The experimental outcomes have revealed improved performance for the projected NCSO than the CSO and several metaheuristic algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kennedy, J.F., Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence, 1st edn, Morgan Kaufmann (2011)

    Google Scholar 

  2. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  3. Back, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  4. Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Mach. Learn. 3(2), 95–99 (1988)

    Article  Google Scholar 

  5. Price, K.V.: An introduction to differential evolution. New Ideas in Optimization, pp. 79–108. McGraw-Hill Ltd., England (1999)

    Google Scholar 

  6. Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optimiz. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  7. Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text categorization. In: Proceedings of International Conference on Machine Learning, Morgan Kaufmann Publishers, pp. 412–420 (1997)

    Google Scholar 

  8. Chen, W.N., Zhang, J.: Particle swarm optimization with an aging leader and challengers. IEEE Trans. Evol. Comput. 17(2), 241–258 (2013)

    Article  Google Scholar 

  9. Liang, J.J., Qin, A.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)

    Article  Google Scholar 

  10. Goh, C., Tan, K.: A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design. Eur. J. Oper. Res. 202(1), 42–54 (2010)

    Article  Google Scholar 

  11. Hartmann, S.: A competitive genetic algorithm for resource-constrained project scheduling. Naval Res. Logist. (NRL) 45(7), 733–750 (1998)

    Article  MathSciNet  Google Scholar 

  12. Whitehead, B., Choate, T.: Cooperative-competitive genetic evolution of radial basis function centers and widths for time series prediction. IEEE Trans. Neural Netw. 7(4), 869–880 (1996)

    Article  Google Scholar 

  13. Cheng, R., Jin, Y.: A multi-swarm evolutionary framework based on a feedback mechanism. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 718–724. IEEE ()

    Google Scholar 

  14. Cheng, R., Jin, Y.: A competitive swarm optimizer for large scale optimization. IEEE Trans. Cybernet. 45(2), 191–204 (2014)

    Article  Google Scholar 

  15. Li, X., Yao, X.: Cooperatively coevolving particle swarms for large scale optimization. IEEE Trans. Evol. Comput. 16(2), 210–224 (2012)

    Article  Google Scholar 

  16. Yang, Z., Tang, K.: Multilevel cooperative coevolution for large scale optimization. IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 1663–1670. IEEE, Hong Kong (2008)

    Chapter  Google Scholar 

  17. Ros, R., Hansen, N.: A simple modification in cma-es achieving linear time and space complexity. Parallel Problem Solving from Nature–PPSN X, pp. 296–305. Springer, Germany (2008)

    Chapter  Google Scholar 

  18. Hsieh, S.-T., Sun, T.-Y.: Solving large scale global optimization using improved particle swarm optimizer. In: IEEE Congress on Evolutionary Computation, 2008. CEC 2008 (IEEE World Congress on Computational Intelligence), pp. 1777–1784. IEEE (2008)

    Google Scholar 

  19. Zhao, S.-Z., Liang, J.J.: Dynamic multi-swarm particle swarm optimizer with local search for large scale global optimization. In: IEEE Congress on Evolutionary Computation, 2008. CEC 2008 (IEEE World Congress on Computational Intelligence), pp. 3845–3852. IEEE (2008)

    Google Scholar 

  20. Wang, J., Cohen, M.F.: An iterative optimization approach for unified image segmentation and matting. In: Proceedings of Tenth IEEE international conference on computer vision, pp. 936–943 (2005)

    Google Scholar 

  21. Wang, J., Cohen, M.F.: Optimized color sampling for robust matting. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  22. Gastal, E.S.L., Oliveira, M.M.: Shared sampling for real-time alpha matting. Comput. Gr Forum 29(2), 575–584 (2010)

    Article  Google Scholar 

  23. He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A global sampling method for alpha matting. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2049–2056 (2011)

    Google Scholar 

  24. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: Patchmatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Gr. 28(3), 24 (2009)

    Article  Google Scholar 

  25. Cai, Z.-Q., Lv, L., Huang, H., Hu, H., Liang, Y.-H.: Improving sampling-based image matting with cooperative coevolution differential evolution algorithm. Soft Comput. 1–14 (2016)

    Google Scholar 

  26. Rhemann, C., Rother, C., Wang, J., Gelautz, M., Kohli, P., Rott, P.: A perceptually motivated online benchmark for image matting. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1826–1833 (2009)

    Google Scholar 

  27. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. Glob. Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhujit Mohapatra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mohapatra, P., Das, K.N., Roy, S. (2020). Novel Competitive Swarm Optimizer for Sampling-Based Image Matting Problem. In: Elçi, A., Sa, P., Modi, C., Olague, G., Sahoo, M., Bakshi, S. (eds) Smart Computing Paradigms: New Progresses and Challenges. Advances in Intelligent Systems and Computing, vol 766. Springer, Singapore. https://doi.org/10.1007/978-981-13-9683-0_12

Download citation

Publish with us

Policies and ethics