Skip to main content

Iron Pathophysiology in Parkinson Diseases

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1173))

Abstract

The key molecular events that provoke Parkinson’s disease (PD) are not fully understood. Iron deposit was found in the substantia nigra pars compacta (SNpc) of PD patients and animal models, where dopaminergic neurons degeneration occurred selectively. The mechanisms involved in disturbed iron metabolism remain unknown, however, considerable evidence indicates that iron transporters dysregulation, activation of L-type voltage-gated calcium channel (LTCC) and ATP-sensitive potassium (KATP) channels, as well as N-methyl-D-aspartate (NMDA) receptors (NMDARs) contribute to this process. There is emerging evidence on the structural links and functional modulations between iron and α-synuclein, and the key player in PD which aggregates in Lewy bodies. Iron is believed to modulate α-synuclein synthesis, post-translational modification, and aggregation. Furthermore, glia, especially activated astroglia and microglia, are involved in iron deposit in PD. Glial contributions were largely dependent on the factors they released, e.g., neurotrophic factors, pro-inflammatory factors, lactoferrin, and those undetermined. Therefore, iron chelation using iron chelators, the extracts from many natural foods with iron chelating properties, may be an effective therapy for prevention and treatment of the disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909

    Article  CAS  PubMed  Google Scholar 

  2. Parkinson J (2002) An essay on the shaking palsy. 1817. J Neuropsychiatry Clin Neurosci 14(2):223–236; discussion 222

    Article  Google Scholar 

  3. Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386(9996):896–912

    Article  CAS  PubMed  Google Scholar 

  4. Weinreb O et al (2013) Targeting dysregulation of brain iron homeostasis in Parkinson’s disease by iron chelators. Free Radic Biol Med 62:52–64

    Article  CAS  PubMed  Google Scholar 

  5. Gallagher DA, Lees AJ, Schrag A (2010) What are the most important nonmotor symptoms in patients with Parkinson’s disease and are we missing them? Mov Disord 25(15):2493–2500

    Article  PubMed  Google Scholar 

  6. Antony PM et al (2013) The hallmarks of Parkinson’s disease. FEBS J 280(23):5981–5993

    Article  CAS  PubMed  Google Scholar 

  7. Jiang H et al (2017) Brain iron metabolism dysfunction in Parkinson’s disease. Mol Neurobiol 54(4):3078–3101

    Article  CAS  PubMed  Google Scholar 

  8. Surmeier DJ, Obeso JA, Halliday GM (2017) Selective neuronal vulnerability in Parkinson disease. Nat Rev Neurosci 18(2):101–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sofic E et al (1988) Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm 74(3):199–205

    Article  CAS  PubMed  Google Scholar 

  10. Dexter DT et al (1987) Increased nigral iron content in postmortem parkinsonian brain. Lancet 2(8569):1219–1220

    Article  CAS  PubMed  Google Scholar 

  11. Dexter DT et al (1989) Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 52(6):1830–1836

    Article  CAS  PubMed  Google Scholar 

  12. Hirsch EC et al (1991) Iron and aluminum increase in the substantia nigra of patients with Parkinson’s disease: an X-ray microanalysis. J Neurochem 56(2):446–451

    Article  CAS  PubMed  Google Scholar 

  13. Sofic E et al (1991) Selective increase of iron in substantia nigra zona compacta of parkinsonian brains. J Neurochem 56(3):978–982

    Article  CAS  PubMed  Google Scholar 

  14. Yu X et al (2013) Decreased iron levels in the temporal cortex in postmortem human brains with Parkinson disease. Neurology 80(5):492–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jia F et al (2018) High dietary iron supplement induces the nigrostriatal dopaminergic neurons lesion in transgenic mice expressing mutant A53T human α-synuclein. Front Aging Neurosci 10:97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Mizuno Y et al (1988) Inhibition of mitochondrial respiration by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mouse brain in vivo. Neurosci Lett 91(3):349–353

    Article  CAS  PubMed  Google Scholar 

  17. Mochizuki H, Yasuda T (2012) Iron accumulation in Parkinson’s disease. J Neural Transm (Vienna) 119(12):1511–1514

    Article  CAS  Google Scholar 

  18. Mochizuki H et al (1994) Iron accumulation in the substantia nigra of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced hemiparkinsonian monkeys. Neurosci Lett 168(1–2):251–253

    Article  CAS  PubMed  Google Scholar 

  19. He Y et al (2003) Dopaminergic cell death precedes iron elevation in MPTP-injected monkeys. Free Radic Biol Med 35(5):540–547

    Article  CAS  PubMed  Google Scholar 

  20. Temlett JA et al (1994) Increased iron in the substantia nigra compacta of the MPTP-lesioned hemiparkinsonian African green monkey: evidence from proton microprobe elemental microanalysis. J Neurochem 62(1):134–146

    Article  CAS  PubMed  Google Scholar 

  21. Wang J et al (2009) Rg1 reduces nigral iron levels of MPTP-treated C57BL6 mice by regulating certain iron transport proteins. Neurochem Int 54(1):43–48

    Article  CAS  PubMed  Google Scholar 

  22. Jiang H, Qian ZM, Xie JX (2003) Increased DMT1 expression and iron content in MPTP-treated C57BL/6 mice. Sheng Li Xue Bao 55(5):571–576

    CAS  PubMed  Google Scholar 

  23. Youdim MB (2003) What have we learnt from CDNA microarray gene expression studies about the role of iron in MPTP induced neurodegeneration and Parkinson’s disease? J Neural Transm Suppl 65:73–88

    Article  Google Scholar 

  24. Wang J, Jiang H, Xie JX (2004) Time dependent effects of 6-OHDA lesions on iron level and neuronal loss in rat nigrostriatal system. Neurochem Res 29(12):2239–2243

    Article  CAS  PubMed  Google Scholar 

  25. He Y, Lee T, Leong SK (1999) Time course of dopaminergic cell death and changes in iron, ferritin and transferrin levels in the rat substantia nigra after 6-hydroxydopamine (6-OHDA) lesioning. Free Radic Res 31(2):103–112

    Article  CAS  PubMed  Google Scholar 

  26. Zhu Y et al (2017) Iron accumulation and microglia activation contribute to substantia nigra hyperechogenicity in the 6-OHDA-induced rat model of Parkinson’s disease. Parkinsonism Relat Disord 36:76–82

    Article  PubMed  Google Scholar 

  27. Olmedo-Diaz S et al (2017) An altered blood-brain barrier contributes to brain iron accumulation and neuroinflammation in the 6-OHDA rat model of Parkinson’s disease. Neuroscience 362:141–151

    Article  CAS  PubMed  Google Scholar 

  28. Zhang S et al (2009) Up-regulation of divalent metal transporter 1 is involved in 1-methyl-4-phenylpyridinium (MPP(+))-induced apoptosis in MES23.5 cells. Neurobiol Agin 30(9):1466–1476

    Article  CAS  PubMed  Google Scholar 

  29. Xu H et al (2010) Rg1 protects iron-induced neurotoxicity through antioxidant and iron regulatory proteins in 6-OHDA-treated MES23.5 cells. J Cell Biochem 111(6):1537–1545

    Article  CAS  PubMed  Google Scholar 

  30. Zhang J et al (2005) Intrapallidal lipopolysaccharide injection increases iron and ferritin levels in glia of the rat substantia nigra and induces locomotor deficits. Neuroscience 135(3):829–838

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Z et al (2014) Pro-inflammatory cytokine-mediated ferroportin down-regulation contributes to the nigral iron accumulation in lipopolysaccharide-induced Parkinsonian models. Neuroscience 257:20–30

    Article  PubMed  CAS  Google Scholar 

  32. Ben-Shachar D, Youdim MB (1991) Intranigral iron injection induces behavioral and biochemical “parkinsonism” in rats. J Neurochem 57(6):2133–2135

    Article  CAS  PubMed  Google Scholar 

  33. Nandipati S, Litvan I (2016) Environmental exposures and Parkinson’s disease. Int J Environ Res Public Health 13(9)

    Article  PubMed Central  CAS  Google Scholar 

  34. Peng J, Oo ML, Andersen JK (2010) Synergistic effects of environmental risk factors and gene mutations in Parkinson’s disease accelerate age-related neurodegeneration. J Neurochem 115(6):1363–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu J et al (2002) Dopamine-dependent neurotoxicity of α-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nat Med 8(6):600–606

    Article  CAS  PubMed  Google Scholar 

  36. Hare DJ, Double KL (2016) Iron and dopamine: a toxic couple. Brain 139:1026–1035

    Article  PubMed  Google Scholar 

  37. Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 3(4):461–491

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Stockwell BR et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171(2):273–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dixon SJ et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kaur D et al (2003) Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson’s disease. Neuron 37(6):899–909

    Article  CAS  PubMed  Google Scholar 

  41. Devos D et al (2014) Targeting chelatable iron as a therapeutic modality in Parkinson’s disease. Antioxid Redox Signal 21(2):195–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Trinder D, Baker E (2003) Transferrin receptor 2: a new molecule in iron metabolism. Int J Biochem Cell Biol 35(3):292–296

    Article  CAS  PubMed  Google Scholar 

  43. Lee DW, Andersen JK (2010) Iron elevations in the aging Parkinsonian brain: a consequence of impaired iron homeostasis? J Neurochem 112(2):332–339

    Article  CAS  PubMed  Google Scholar 

  44. Ward RJ et al (2014) The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 13(10):1045–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kalivendi SV et al (2003) 1-Methyl-4-phenylpyridinium (MPP+)-induced apoptosis and mitochondrial oxidant generation: role of transferrin-receptor-dependent iron and hydrogen peroxide. Biochem J 371(Pt 1):151–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mastroberardino PG et al (2009) A novel transferrin/TfR2-mediated mitochondrial iron transport system is disrupted in Parkinson’s disease. Neurobiol Dis 34(3):417–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee PL et al (1998) The human Nramp2 gene: characterization of the gene structure, alternative splicing, promoter region and polymorphisms. Blood Cells Mol Dis 24(2):199–215

    Article  CAS  PubMed  Google Scholar 

  48. Hubert N, Hentze MW (2002) Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: implications for regulation and cellular function. Proc Natl Acad Sci U S A 99(19):12345–12350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Song N et al (2007) Divalent metal transporter 1 up-regulation is involved in the 6-hydroxydopamine-induced ferrous iron influx. J Neurosci Res 85(14):3118–3126

    Article  CAS  PubMed  Google Scholar 

  50. Andrews NC (1999) The iron transporter DMT1. Int J Biochem Cell Biol 31(10):991–994

    Article  CAS  PubMed  Google Scholar 

  51. Roth JA et al (2010) Parkin regulates metal transport via proteasomal degradation of the 1B isoforms of divalent metal transporter 1. J Neurochem 113(2):454–464

    Article  CAS  PubMed  Google Scholar 

  52. Foot NJ et al (2008) Regulation of the divalent metal ion transporter DMT1 and iron homeostasis by a ubiquitin-dependent mechanism involving Ndfips and WWP2. Blood 112(10):4268–4275

    Article  CAS  PubMed  Google Scholar 

  53. Jiang H et al (2010) Up-regulation of divalent metal transporter 1 in 6-hydroxydopamine intoxication is IRE/IRP dependent. Cell Res 20(3):345–356

    Article  CAS  PubMed  Google Scholar 

  54. Salazar J et al (2008) Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proc Natl Acad Sci U S A 105(47):18578–18583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jia W et al (2015) Ndfip1 attenuated 6-OHDA-induced iron accumulation via regulating the degradation of DMT1. Neurobiol Aging 36(2):1183–1193

    Article  CAS  PubMed  Google Scholar 

  56. Howitt J et al (2014) Increased Ndfip1 in the substantia nigra of Parkinsonian brains is associated with elevated iron levels. PLoS ONE 9(1):e87119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Baker EN et al (1994) Three-dimensional structure of lactoferrin in various functional states. Adv Exp Med Biol 357:1–12

    Article  CAS  PubMed  Google Scholar 

  58. Fillebeen C et al (2001) Lactoferrin is synthesized by activated microglia in the human substantia nigra and its synthesis by the human microglial CHME cell line is upregulated by tumor necrosis factor alpha or 1-methyl-4-phenylpyridinium treatment. Brain Res Mol Brain Res 96(1–2):103–113

    Article  CAS  PubMed  Google Scholar 

  59. Faucheux BA et al (1995) Expression of lactoferrin receptors is increased in the mesencephalon of patients with Parkinson disease. Proc Natl Acad Sci U S A 92(21):9603–9607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang J, Jiang H, Xie JX (2007) Ferroportin1 and hephaestin are involved in the nigral iron accumulation of 6-OHDA-lesioned rats. Eur J Neurosci 25(9):2766–2772

    Article  PubMed  Google Scholar 

  61. Yoshida K et al (1995) A mutation in the ceruloplasmin gene is associated with systemic hemosiderosis in humans. Nat Genet 9(3):267–272

    Article  CAS  PubMed  Google Scholar 

  62. Song N et al (2010) Ferroportin 1 but not hephaestin contributes to iron accumulation in a cell model of Parkinson’s disease. Free Radic Biol Med 48(2):332–341

    Article  CAS  PubMed  Google Scholar 

  63. Boll MC et al (1999) Reduced ferroxidase activity in the cerebrospinal fluid from patients with Parkinson’s disease. Neurosci Lett 265(3):155–158

    Article  CAS  PubMed  Google Scholar 

  64. Wang J, Bi M, Xie J (2015) Ceruloplasmin is involved in the nigral iron accumulation of 6-OHDA-lesioned rats. Cell Mol Neurobiol 35(5):661–668

    Article  CAS  PubMed  Google Scholar 

  65. Dragicevic E, Schiemann J, Liss B (2015) Dopamine midbrain neurons in health and Parkinson’s disease: emerging roles of voltage-gated calcium channels and ATP-sensitive potassium channels. Neuroscience 284:798–814

    Article  CAS  PubMed  Google Scholar 

  66. Basso M et al (2004) Proteome analysis of human substantia nigra in Parkinson’s disease. Proteomics 4(12):3943–3952

    Article  CAS  PubMed  Google Scholar 

  67. Tsushima RG et al (1999) Modulation of iron uptake in heart by L-type Ca2+ channel modifiers: possible implications in iron overload. Circ Res 84(11):1302–1309

    Article  CAS  PubMed  Google Scholar 

  68. Oudit GY et al (2003) L-type Ca2+ channels provide a major pathway for iron entry into cardiomyocytes in iron-overload cardiomyopathy. Nat Med 9(9):1187–1194

    Article  CAS  PubMed  Google Scholar 

  69. Gaasch JA et al (2007) Voltage-gated calcium channels provide an alternate route for iron uptake in neuronal cell cultures. Neurochem Res 32(10):1686–1693

    Article  CAS  PubMed  Google Scholar 

  70. Ma Z, Zhou Y, Xie J (2012) Nifedipine prevents iron accumulation and reverses iron-overload-induced dopamine neuron degeneration in the substantia nigra of rats. Neurotox Res 22(4):274–279

    Article  CAS  PubMed  Google Scholar 

  71. Carvajal FJ, Mattison HA, Cerpa W (2016) Role of NMDA receptor-mediated glutamatergic signaling in chronic and acute neuropathologies. Neural Plast 2016:2701526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Ambrosi G, Cerri S, Blandini F (2014) A further update on the role of excitotoxicity in the pathogenesis of Parkinson’s disease. J Neural Transm (Vienna) 121(8):849–859

    Article  CAS  Google Scholar 

  73. Schiemann J et al (2012) K-ATP channels in dopamine substantia nigra neurons control bursting and novelty-induced exploration. Nat Neurosci 15(9):1272–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nakamichi N et al (2004) Relevant modulation by ferrous ions of N-methyl-D-aspartate receptors in ischemic brain injuries. Curr Neurovasc Res 1(5):429–440

    Article  CAS  PubMed  Google Scholar 

  75. Pelizzoni I et al (2011) Iron handling in hippocampal neurons: activity-dependent iron entry and mitochondria-mediated neurotoxicity. Aging Cell 10(1):172–183

    Article  CAS  PubMed  Google Scholar 

  76. Cheah JH et al (2006) NMDA receptor-nitric oxide transmission mediates neuronal iron homeostasis via the GTPase Dexras1. Neuron 51(4):431–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen Y et al (2013) Dexras1, a small GTPase, is required for glutamate-NMDA neurotoxicity. J Neurosci 33(8):3582–3587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Guix FX et al (2005) The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol 76(2):126–152

    Article  CAS  PubMed  Google Scholar 

  79. Chen Y et al (2015) PKA-mediated phosphorylation of Dexras1 suppresses iron trafficking by inhibiting S-nitrosylation. FEBS Lett 589(20 Pt B):3212–3219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Choi BR et al (2013) PKA modulates iron trafficking in the striatum via small GTPase. Rhes. Neuroscience 253:214–220

    Article  CAS  PubMed  Google Scholar 

  81. White RS et al (2016) Lysosomal iron modulates NMDA receptor-mediated excitation via small GTPase, Dexras1. Mol Brain 9:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Xu H et al (2018) Activation of NMDA receptors mediated iron accumulation via modulating iron transporters in Parkinson’s disease. FASEB J, fj201800060RR

    Google Scholar 

  83. Haeger P et al (2010) Increased hippocampal expression of the divalent metal transporter 1 (DMT1) mRNA variants 1B and +IRE and DMT1 protein after NMDA-receptor stimulation or spatial memory training. Neurotox Res 17(3):238–247

    Article  CAS  PubMed  Google Scholar 

  84. Liss B, Roeper J (2001) ATP-sensitive potassium channels in dopaminergic neurons: transducers of mitochondrial dysfunction. News Physiol Sci 16:214–217

    CAS  PubMed  Google Scholar 

  85. Liss B et al (2005) K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons. Nat Neurosci 8(12):1742–1751

    Article  CAS  PubMed  Google Scholar 

  86. Li YX, Bertram R, Rinzel J (1996) Modeling N-methyl-D-aspartate-induced bursting in dopamine neurons. Neuroscience 71(2):397–410

    Article  CAS  PubMed  Google Scholar 

  87. Chan CS et al (2007) ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature 447(7148):1081–1086

    Article  CAS  PubMed  Google Scholar 

  88. Guzman JN et al (2010) Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 468(7324):696–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gunshin H et al (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388(6641):482–488

    Article  CAS  PubMed  Google Scholar 

  90. Du X et al (2016) Activation of ATP-sensitive potassium channels enhances DMT1-mediated iron uptake in SK-N-SH cells in vitro. Sci Rep 6:33674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Takanashi M et al (2001) Iron accumulation in the substantia nigra of autosomal recessive juvenile parkinsonism (ARJP). Parkinsonism Relat Disord 7(4):311–314

    Article  CAS  PubMed  Google Scholar 

  92. Altamura S, Muckenthaler MU (2009) Iron toxicity in diseases of aging: Alzheimer’s disease, Parkinson’s disease and atherosclerosis. J Alzheimer’s Dis 16(4):879–895

    Article  CAS  Google Scholar 

  93. Curtis AR et al (2001) Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat Genet 28(4):350–354

    Article  CAS  PubMed  Google Scholar 

  94. Harris ZL et al (1995) Aceruloplasminemia: molecular characterization of this disorder of iron metabolism. Proc Natl Acad Sci U S A 92(7):2539–2543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nichols CG (2006) KATP channels as molecular sensors of cellular metabolism. Nature 440(7083):470–476

    Article  CAS  PubMed  Google Scholar 

  96. Holemans S et al (1994) Sulfonylurea binding sites in normal human brain and in Parkinson’s disease, progressive supranuclear palsy and Huntington’s disease. Brain Res 642(1–2):327–333

    Article  CAS  PubMed  Google Scholar 

  97. Zhang CW et al (2017) Transgenic mice overexpressing the divalent metal transporter 1 exhibit iron accumulation and enhanced Parkin expression in the brain. Neuromolecular Med 19(2–3):375–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Castellani RJ et al (2000) Sequestration of iron by Lewy bodies in Parkinson’s disease. Acta Neuropathol 100(2):111–114

    Article  CAS  PubMed  Google Scholar 

  99. Binolfi A et al (2006) Interaction of α-synuclein with divalent metal ions reveals key differences: a link between structure, binding specificity and fibrillation enhancement. J Am Chem Soc 128(30):9893–9901

    Article  CAS  PubMed  Google Scholar 

  100. Uversky VN, Li J, Fink AL (2001) Metal-triggered structural transformations, aggregation, and fibrillation of human α-synuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure. J Biol Chem 276(47):44284–4496

    Article  CAS  Google Scholar 

  101. Bharathi, Indi SS, Rao KS (2007) Copper- and iron-induced differential fibril formation in α-synuclein: TEM study. Neurosci Lett 424(2):78–82

    Article  CAS  PubMed  Google Scholar 

  102. Friedlich AL, Tanzi RE, Rogers JT (2007) The 5’-untranslated region of Parkinson’s disease α-synuclein messengerRNA contains a predicted iron responsive element. Mol Psychiatry 12(3):222–223

    Article  CAS  PubMed  Google Scholar 

  103. Li W et al (2011) Oxidative stress partially contributes to iron-induced α-synuclein aggregation in SK-N-SH cells. Neurotox Res 19(3):435–442

    Article  PubMed  CAS  Google Scholar 

  104. Koukouraki P, Doxakis E (2016) Constitutive translation of human α-synuclein is mediated by the 5’-untranslated region. Open Biol 6(4):160022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Febbraro F et al (2012) α-Synuclein expression is modulated at the translational level by iron. NeuroReport 23(9):576–580

    Article  CAS  PubMed  Google Scholar 

  106. Rogers JT et al (2002) An iron-responsive element type II in the 5’-untranslated region of the Alzheimer’s amyloid precursor protein transcript. J Biol Chem 277(47):45518–45528

    Article  CAS  PubMed  Google Scholar 

  107. Oueslati A, Fournier M, Lashuel HA (2010) Role of post-translational modifications in modulating the structure, function and toxicity of α-synuclein: implications for Parkinson’s disease pathogenesis and therapies. Prog Brain Res 183:115–145

    Article  CAS  PubMed  Google Scholar 

  108. Barrett PJ,. Timothy Greenamyre, J (2015) Post-translational modification of α-synuclein in Parkinson’s disease. Brain Res 1628(Pt B):247–253

    Article  CAS  PubMed  Google Scholar 

  109. Giasson BI et al (2000) Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in synucleinopathy lesions. Science 290(5493):985–989

    Article  CAS  PubMed  Google Scholar 

  110. Reynolds MR, Berry RW, Binder LI (2007) Nitration in neurodegeneration: deciphering the “Hows” “nYs”. Biochemistry 46(25):7325–7336

    Article  CAS  PubMed  Google Scholar 

  111. Burai R et al (2015) Elucidating the role of site-SPECIFIC Nitration of α-Synuclein in the pathogenesis of Parkinson’s disease via protein semisynthesis and mutagenesis. J Am Chem Soc 137(15):5041–5052

    Article  CAS  PubMed  Google Scholar 

  112. Kleinknecht A et al (2016) C-terminal tyrosine residue modifications modulate the protective phosphorylation of serine 129 of α-synuclein in a yeast model of Parkinson’s disease. PLoS Genet 12(6):e1006098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Hodara R et al (2004) Functional consequences of α-synuclein tyrosine nitration: diminished binding to lipid vesicles and increased fibril formation. J Biol Chem 279(46):47746–47753

    Article  CAS  PubMed  Google Scholar 

  114. Li X et al (2012) Iron increases liver injury through oxidative/nitrative stress in diabetic rats: involvement of nitrotyrosination of glucokinase. Biochimie 94(12):2620–2627

    Article  CAS  PubMed  Google Scholar 

  115. Shavali S, Combs CK, Ebadi M (2006) Reactive macrophages increase oxidative stress and α-synuclein nitration during death of dopaminergic neuronal cells in co-culture: relevance to Parkinson’s disease. Neurochem Res 31(1):85–94

    Article  CAS  PubMed  Google Scholar 

  116. Reynolds AD et al (2008) Nitrated α-synuclein-activated microglial profiling for Parkinson’s disease. J Neurochem 104(6):1504–1525

    Article  CAS  PubMed  Google Scholar 

  117. Wen L et al (2018) NLRP3 inflammasome activation in the thymus of MPTP-induced Parkinsonian mouse model. Toxicol Lett 288:1–8

    Article  CAS  PubMed  Google Scholar 

  118. Yu Z et al (2010) Nitrated α-synuclein induces the loss of dopaminergic neurons in the substantia nigra of rats. PLoS ONE 5(4):e9956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Fujiwara H et al (2002) α-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4(2):160–164

    Article  CAS  PubMed  Google Scholar 

  120. Anderson JP et al (2006) Phosphorylation of Ser-129 is the dominant pathological modification of α-synuclein in familial and sporadic Lewy body disease. J Biol Chem 281(40):29739–29752

    Article  CAS  PubMed  Google Scholar 

  121. Chen L, Feany MB (2005) α-synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease. Nat Neurosci 8(5):657–663

    Article  CAS  PubMed  Google Scholar 

  122. Huang B et al (2018) Phosphorylated α-synuclein accumulations and Lewy body-like pathology distributed in Parkinson’s disease-related brain areas of aged Rhesus monkeys treated with MPTP. Neuroscience 379:302–315

    Article  CAS  PubMed  Google Scholar 

  123. Kuwahara T et al (2012) Phosphorylation of α-synuclein protein at Ser-129 reduces neuronal dysfunction by lowering its membrane binding property in Caenorhabditis elegans. J Biol Chem 287(10):7098–7109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Oueslati A et al (2013) Polo-like kinase 2 regulates selective autophagic α-synuclein clearance and suppresses its toxicity in vivo. Proc Natl Acad Sci U S A 110(41):E3945–E3954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sancenon V et al (2012) Suppression of α-synuclein toxicity and vesicle trafficking defects by phosphorylation at S129 in yeast depends on genetic context. Hum Mol Genet 21(11):2432–2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tenreiro S, Eckermann K, Outeiro TF (2014) Protein phosphorylation in neurodegeneration: friend or foe? Front Mol Neurosci 7:42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Takahashi M et al (2007) Oxidative stress-induced phosphorylation, degradation and aggregation of α-synuclein are linked to upregulated CK2 and cathepsin D. Eur J Neurosci 26(4):863–874

    Article  PubMed  Google Scholar 

  128. Perfeito R et al (2014) Linking α-synuclein phosphorylation to reactive oxygen species formation and mitochondrial dysfunction in SH-SY5Y cells. Mol Cell Neurosci 62:51–59

    Article  CAS  PubMed  Google Scholar 

  129. Lu Y et al (2011) Phosphorylation of α-Synuclein at Y125 and S129 alters its metal binding properties: implications for understanding the role of α-Synuclein in the pathogenesis of Parkinson’s Disease and related disorders. ACS Chem Neurosci 2(11):667–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cahill CM et al (2009) Amyloid precursor protein and alpha synuclein translation, implications for iron and inflammation in neurodegenerative diseases. Biochim Biophys Acta 1790(7):615–628

    Article  CAS  PubMed  Google Scholar 

  131. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35

    Article  PubMed  Google Scholar 

  132. Mirza B et al (2000) The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson’s disease. Neuroscience 95(2):425–432

    Article  CAS  PubMed  Google Scholar 

  133. Heneka MT, Rodriguez JJ, Verkhratsky A (2010) Neuroglia in neurodegeneration. Brain Res Rev 63(1–2):189–211

    Article  CAS  PubMed  Google Scholar 

  134. Neal M, Richardson JR (2017) Epigenetic regulation of astrocyte function in neuroinflammation and neurodegeneration. Biochim Biophys Acta 1864(2):432–443

    Article  PubMed Central  CAS  Google Scholar 

  135. Collins LM et al (2012) Contributions of central and systemic inflammation to the pathophysiology of Parkinson’s disease. Neuropharmacology 62(7):2154–2168

    Article  CAS  PubMed  Google Scholar 

  136. Long-Smith CM, Sullivan AM, Nolan YM (2009) The influence of microglia on the pathogenesis of Parkinson’s disease. Prog Neurobiol 89(3):277–287

    Article  CAS  PubMed  Google Scholar 

  137. Phani S, Loike JD, Przedborski S (2012) Neurodegeneration and inflammation in Parkinson’s disease. Parkinsonism Relat Disord 18(Suppl 1):S207–S209

    Article  PubMed  Google Scholar 

  138. Benarroch EE (2009) Brain iron homeostasis and neurodegenerative disease. Neurology 72(16):1436–1440

    Article  PubMed  Google Scholar 

  139. Rouault TA, Zhang DL, Jeong SY (2009) Brain iron homeostasis, the choroid plexus, and localization of iron transport proteins. Metab Brain Dis 24(4):673–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Healy S, McMahon JM, FitzGerald U (2017) Modelling iron mismanagement in neurodegenerative disease in vitro: paradigms, pitfalls, possibilities & practical considerations. Prog Neurobiol 158:1–14

    Article  CAS  PubMed  Google Scholar 

  141. Zecca L et al (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5(11):863–873

    Article  CAS  PubMed  Google Scholar 

  142. Bartzokis G et al (2007) Brain ferritin iron may influence age- and gender-related risks of neurodegeneration. Neurobiol Aging 28(3):414–423

    Article  CAS  PubMed  Google Scholar 

  143. Kress GJ, Dineley KE, Reynolds IJ (2002) The relationship between intracellular free iron and cell injury in cultured neurons, astrocytes, and oligodendrocytes. J Neurosci 22(14):5848–5855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Oshiro S et al (2008) Microglia and astroglia prevent oxidative stress-induced neuronal cell death: implications for aceruloplasminemia. Biochim Biophys Acta 1782(2):109–117

    Article  CAS  PubMed  Google Scholar 

  145. Bishop GM et al (2011) Accumulation of non-transferrin-bound iron by neurons, astrocytes, and microglia. Neurotox Res 19(3):443–451

    Article  CAS  PubMed  Google Scholar 

  146. Rathnasamy G, Ling EA, Kaur C (2013) Consequences of iron accumulation in microglia and its implications in neuropathological conditions. CNS Neurol Disord: Drug Targets 12(6):785–798

    Article  CAS  Google Scholar 

  147. Thomsen MS et al (2015) Neurodegeneration with inflammation is accompanied by accumulation of iron and ferritin in microglia and neurons. Neurobiol Dis 81:108–118

    Article  CAS  PubMed  Google Scholar 

  148. Andersen HH, Johnsen KB, Moos T (2014) Iron deposits in the chronically inflamed central nervous system and contributes to neurodegeneration. Cell Mol Life Sci 71(9):1607–1622

    Article  CAS  PubMed  Google Scholar 

  149. Jellinger K et al (1990) Brain iron and ferritin in Parkinson’s and Alzheimer’s diseases. J Neural Transm Park Dis Dement Sect 2(4):327–340

    Article  CAS  PubMed  Google Scholar 

  150. Zhang HY et al (2014) Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor inhibit ferrous iron influx via divalent metal transporter 1 and iron regulatory protein 1 regulation in ventral mesencephalic neurons. Biochim Biophys Acta 1843(12):2967–2975

    Article  CAS  PubMed  Google Scholar 

  151. Zhang HY et al (2013) 6-hydroxydopamine promotes iron traffic in primary cultured astrocytes. Biometals 26(5):705–714

    Article  CAS  PubMed  Google Scholar 

  152. Kim BW et al (2016) Pathogenic upregulation of glial lipocalin-2 in the Parkinsonian dopaminergic system. J Neurosci 36(20):5608–5622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. An L et al (2009) Expression and localization of lactotransferrin messenger RNA in the cortex of Alzheimer’s disease. Neurosci Lett 452(3):277–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Fillebeen C et al (1999) Lactoferrin is synthesized by mouse brain tissue and its expression is enhanced after MPTP treatment. Brain Res Mol Brain Res 72(2):183–194

    Article  CAS  PubMed  Google Scholar 

  155. Rousseau E, Michel PP, Hirsch EC (2013) The iron-binding protein lactoferrin protects vulnerable dopamine neurons from degeneration by preserving mitochondrial calcium homeostasis. Mol Pharmacol 84(6):888–898

    Article  CAS  PubMed  Google Scholar 

  156. Wang J et al (2015) The protective effect of lactoferrin on ventral mesencephalon neurons against MPP+ is not connected with its iron binding ability. Sci Rep 5:10729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wang J et al (2013) Pro-inflammatory cytokines modulate iron regulatory protein 1 expression and iron transportation through reactive oxygen/nitrogen species production in ventral mesencephalic neurons. Biochim Biophys Acta 1832(5):618–625

    Article  CAS  PubMed  Google Scholar 

  158. Urrutia P et al (2013) Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells. J Neurochem 126(4):541–549

    Article  CAS  PubMed  Google Scholar 

  159. Kolnagou A, Kontoghiorghe CN, Kontoghiorghes GJ (2018) New targeted therapies and diagnostic methods for iron overload diseases. Front Biosci (Schol Ed) 10:1–20

    Article  Google Scholar 

  160. Dusek P, Schneider SA, Aaseth J (2016) Iron chelation in the treatment of neurodegenerative diseases. J Trace Elem Med Biol 38:81–92

    Article  CAS  PubMed  Google Scholar 

  161. Gumienna-Kontecka E et al (2014) Iron chelating strategies in systemic metal overload, neurodegeneration and cancer. Curr Med Chem 21(33):3741–3767

    Article  CAS  PubMed  Google Scholar 

  162. Mounsey RB, Teismann P (2012) Chelators in the treatment of iron accumulation in Parkinson’s disease. Int J Cell Biol 2012:983245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Hider RC et al (2011) The potential application of iron chelators for the treatment of neurodegenerative diseases. Metallomics 3(3):239–249

    Article  CAS  PubMed  Google Scholar 

  164. Levenson CW et al (2004) Role of dietary iron restriction in a mouse model of Parkinson’s disease. Exp Neurol 190(2):506–514

    Article  CAS  PubMed  Google Scholar 

  165. Shoham S, Youdim MB (2004) Nutritional iron deprivation attenuates kainate-induced neurotoxicity in rats: implications for involvement of iron in neurodegeneration. Ann N Y Acad Sci 1012:94–114

    Article  CAS  PubMed  Google Scholar 

  166. Sangchot P et al (2002) Deferoxamine attenuates iron-induced oxidative stress and prevents mitochondrial aggregation and α-synuclein translocation in SK-N-SH cells in culture. Dev Neurosci 24(2–3):143–153

    Article  CAS  PubMed  Google Scholar 

  167. Jiang H et al (2006) Neuroprotective effects of iron chelator Desferal on dopaminergic neurons in the substantia nigra of rats with iron-overload. Neurochem Int 49(6):605–609

    Article  CAS  PubMed  Google Scholar 

  168. Lan J, Jiang DH (1997) Desferrioxamine and vitamin E protect against iron and MPTP-induced neurodegeneration in mice. J Neural Transm (Vienna) 104(4–5):469–481

    Article  CAS  Google Scholar 

  169. Febbraro F et al (2013) Chronic intranasal deferoxamine ameliorates motor defects and pathology in the α-synuclein rAAV Parkinson’s model. Exp Neurol 247:45–58

    Article  CAS  PubMed  Google Scholar 

  170. Dexter DT et al (2011) Clinically available iron chelators induce neuroprotection in the 6-OHDA model of Parkinson’s disease after peripheral administration. J Neural Transm (Vienna) 118(2):223–231

    Article  CAS  Google Scholar 

  171. Shachar DB et al (2004) Neuroprotection by a novel brain permeable iron chelator, VK-28, against 6-hydroxydopamine lession in rats. Neuropharmacology 46(2):254–263

    Article  PubMed  CAS  Google Scholar 

  172. Gal S et al (2010) Restoration of nigrostriatal dopamine neurons in post-MPTP treatment by the novel multifunctional brain-permeable iron chelator-monoamine oxidase inhibitor drug, M30. Neurotox Res 17(1):15–27

    Article  CAS  PubMed  Google Scholar 

  173. Mena NP et al (2015) The novel mitochondrial iron chelator 5-((methylamino)methyl)-8-hydroxyquinoline protects against mitochondrial-induced oxidative damage and neuronal death. Biochem Biophys Res Commun 463(4):787–792

    Article  CAS  PubMed  Google Scholar 

  174. Zhu W et al (2007) Prevention and restoration of lactacystin-induced nigrostriatal dopamine neuron degeneration by novel brain-permeable iron chelators. FASEB J 21(14):3835–3844

    Article  CAS  PubMed  Google Scholar 

  175. Gal S et al (2006) M30, a novel multifunctional neuroprotective drug with potent iron chelating and brain selective monoamine oxidase-ab inhibitory activity for Parkinson’s disease. J Neural Transm Suppl 70:447–456

    CAS  Google Scholar 

  176. Gotsbacher MP et al (2017) Analogues of desferrioxamine B designed to attenuate iron-mediated neurodegeneration: synthesis, characterisation and activity in the MPTP-mouse model of Parkinson’s disease. Metallomics 9(7):852–864

    Article  CAS  PubMed  Google Scholar 

  177. Telfer TJ et al (2017) Adamantyl- and other polycyclic cage-based conjugates of desferrioxamine B (DFOB) for treating iron-mediated toxicity in cell models of Parkinson’s disease. Bioorg Med Chem Lett 27(8):1698–1704

    Article  CAS  PubMed  Google Scholar 

  178. Das B et al (2017) A Novel Iron(II) Preferring Dopamine Agonist Chelator as Potential Symptomatic and Neuroprotective Therapeutic Agent for Parkinson’s Disease. ACS Chem Neurosci 8(4):723–730

    Article  CAS  PubMed  Google Scholar 

  179. Wang N et al (2017) Iron chelation nanoparticles with delayed saturation as an effective therapy for Parkinson disease. Biomacromol 18(2):461–474

    Article  CAS  Google Scholar 

  180. Aguirre P et al (2017) Neuroprotective Effect of a new 7,8-dihydroxycoumarin-based Fe(2+)/Cu(2+) chelator in cell and animal models of Parkinson’s disease. ACS Chem Neurosci 8(1):178–185

    Article  CAS  PubMed  Google Scholar 

  181. Abdelsayed S et al (2015) Piperazine derivatives as iron chelators: a potential application in neurobiology. Biometals 28(6):1043–1061

    Article  CAS  PubMed  Google Scholar 

  182. Workman DG et al (2015) Protection from neurodegeneration in the 6-hydroxydopamine (6-OHDA) model of Parkinson’s with novel 1-hydroxypyridin-2-one metal chelators. Metallomics 7(5):867–876

    Article  CAS  PubMed  Google Scholar 

  183. Finkelstein DI et al (2017) The novel compound PBT434 prevents iron mediated neurodegeneration and α-synuclein toxicity in multiple models of Parkinson’s disease. Acta Neuropathol Commun 5(1):53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Xu Q et al (2017) Epigallocatechin gallate has a neurorescue effect in a mouse model of Parkinson disease. J Nutr 147(10):1926–1931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Zhao J et al (2017) Metal chelator EGCG attenuates Fe(III)-induced conformational transition of α-synuclein and protects AS-PC12 cells against Fe(III)-induced death. J Neurochem 143(1):136–146

    Article  CAS  PubMed  Google Scholar 

  186. Chan DK et al (1998) Genetic and environmental risk factors for Parkinson’s disease in a Chinese population. J Neurol Neurosurg Psychiatry 65(5):781–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Wang YQ et al (2015) Neuroprotective effects of ginkgetin against neuroinjury in Parkinson’s disease model induced by MPTP via chelating iron. Free Radic Res 49(9):1069–1080

    Article  CAS  PubMed  Google Scholar 

  188. Ma ZG et al (2007) Myricetin reduces 6-hydroxydopamine-induced dopamine neuron degeneration in rats. NeuroReport 18(11):1181–1185

    Article  CAS  PubMed  Google Scholar 

  189. Haleagrahara N, Siew CJ, Ponnusamy K (2013) Effect of quercetin and desferrioxamine on 6-hydroxydopamine (6-OHDA) induced neurotoxicity in striatum of rats. J Toxicol Sci 38(1):25–33

    Article  CAS  PubMed  Google Scholar 

  190. Du XX et al (2012) Curcumin protects nigral dopaminergic neurons by iron-chelation in the 6-hydroxydopamine rat model of Parkinson’s disease. Neurosci Bull 28(3):253–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Guo C, Chen X, Xiong P (2014) Baicalin suppresses iron accumulation after substantia nigra injury: relationship between iron concentration and transferrin expression. Neural Regen Res 9(6):630–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Xiong P et al (2012) Baicalin and deferoxamine alleviate iron accumulation in different brain regions of Parkinson’s disease rats. Neural Regen Res 7(27):2092–2098

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Xu H et al (2010) Rg1 protects the MPP+ -treated MES23.5 cells via attenuating DMT1 up-regulation and cellular iron uptake. Neuropharmacology 58(2):488–494

    Article  CAS  PubMed  Google Scholar 

  194. Gonzalez-Burgos E, Fernandez-Moriano C, Gomez-Serranillos MP (2015) Potential neuroprotective activity of Ginseng in Parkinson’s disease: a review. J Neuroimmune Pharmacol 10(1):14–29

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jiang, H., Song, N., Jiao, Q., Shi, L., Du, X. (2019). Iron Pathophysiology in Parkinson Diseases. In: Chang, YZ. (eds) Brain Iron Metabolism and CNS Diseases. Advances in Experimental Medicine and Biology, vol 1173. Springer, Singapore. https://doi.org/10.1007/978-981-13-9589-5_4

Download citation

Publish with us

Policies and ethics