Skip to main content

2D Transition Metal Dichalcogenides for Solution-Processed Organic and Perovskite Solar Cells

  • Chapter
  • First Online:

Abstract

The construction of low cost, printable compatible, solution processed, of high performance, stable solar cells is one of the scientific milestones of the next ten years. The discovery of graphene launched a new era in the materials science, and the research implemented in the exceptional properties of the two-dimensional (2D) materials. The chemical, physical, electrical and mechanical properties of 2D materials match with the requirements that the various building blocks of the third-generation photovoltaics should have in order for these devices to deliver exceptional performance and become attractive alternatives to silicon-based solar cells. The 2D library of materials expands in a very high pace and nowadays includes 150 exotic layered materials. Among them are the transition metal dichalcogenides (2D-TMDs). Recent advances in atomically thin 2D-TMDs (e.g., MoS2, WS2, MoSe2 and WSe2) have introduced numerous promising technologies in nanotechnologies, photonics, sensing, energy storage and solar cells to name few. This chapter highlights the contributions of 2D-TMDs toward the construction of high efficiency and of long lifetime, solution-processed organic and perovskite solar cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

MoS2:

Molybdenum Disulfide

MoS2@Au:

Gold nanoparticles decorated MoS2

ce-MoS2:

Chemically exploited 2D MOS2

O-ce-MoS2:

UV-ozone-treated ce-MoS2

O-MoS2:

UV-ozone-treated MoS2

m-MoS2:

Modified MoS2

MoSe2:

Molybdenum Diselenide

NbSe2:

Niobium Diselenide

TaS2:

Tantalum Disulfide

TiS2:

Titanium Disulfide

WS2:

Tungsten Disulfide

WS2-Au:

Gold nanoparticles decorated WS2

WSe2:

Tungsten Diselenide

References

  1. Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC et al (2015) Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347:1246501–1246509

    Article  Google Scholar 

  2. Cao X, Tao C, Zhang X, Zhao W, Zhang H (2016) Solution-processed two-dimensional metal dichalcogenide-based nanomaterials for energy storage and conversion. Adv Mater 28:6167–6196

    Article  CAS  Google Scholar 

  3. Kakavelakis G, Kymakis E, Petridis K (2018) 2D materials beyond graphene for metal halide perovskite solar cells. Adv Mater Interf https://doi.org/10.1002/admi.201800339

    Article  Google Scholar 

  4. Ortiz-Quiles EO, Cabrera CR (2017) Exfoliated molybdenum disulfide for dye sensitized solar cells. FlatChem 2:1–7

    Article  CAS  Google Scholar 

  5. Marcia M, Hirsch A, Hauke F (2017) Perylene-based non-covalent functionalization of 2D materials. FlatChem 1:89–103

    Article  CAS  Google Scholar 

  6. Yu G, Cao J, Hummelen J, Heeger A (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270:1789–1791

    Article  CAS  Google Scholar 

  7. Jonas F, Krafft W, Muys B (1995) Conductive coatings, technical applications and properties. Macromol Symp 100:169–173

    Article  Google Scholar 

  8. Voroshazi E, Verreet B, Buri A, Muller R, Di Nuzzo D, Heremans P (2011) Influence of cathode oxidation via the hole extraction layer in polymer: fullerene solar cells. Org Electron 12:736–744

    Article  CAS  Google Scholar 

  9. Shrotriya V, Li G, Yao Y, Chu CW, Yang Y (2006) Transition metal oxides as the buffer layer for polymer photovoltaic cells. Appl Phys Lett 88:073508

    Article  Google Scholar 

  10. Girotto C, Voroshazi E, Cheyns D, Heremans P, Rand BP (2011) Solution-processed MoO3 thin films as a hole-injection layer for organic solar cells. ACS Appl Mater Interfaces 3:3244–3247

    Article  CAS  Google Scholar 

  11. Shizuo T, Koji N, Yasunori T (1996) Metal oxides as a hole-injecting layer for an organic electroluminescent device. J Phys D Appl Phys 29:2750–2753

    Article  Google Scholar 

  12. Yun JM, Noh YJ, Yeo JS, Go YJ, Na SI, Jeong HG et al (2013) Efficient work-function engineering of solution processed MoS2 thin-films for novel hole and electron transport layers leading to high-performance polymer solar cells. J Mater Chem C 1:3777–3783

    Article  CAS  Google Scholar 

  13. Gu X, Cui W, Li H, Wu Z, Zheng Z, Lee ST et al (2013) A solution-processed hole extraction layer made from ultrathin mos2 nanosheets for efficient organic solar cells. Adv Energy Mater 3:1262–1268

    Article  CAS  Google Scholar 

  14. Gu X, Cui W, Song T, Liu C, Shi X, Wang S et al (2014) Solution-processed 2D niobium diselenide nanosheets as efficient hole-transport layers in organic solar cells. Chemsuschem 7:416–420

    Article  CAS  Google Scholar 

  15. Murphy DW, Di Salvo FJ, Hull GW, Waszczak JV (1976) Convenient preparation and physical properties of lithium intercalation compounds of Group 4B and 5B layered transition metal dichalcogenides. Inorg Chem 15:17–21

    Article  CAS  Google Scholar 

  16. Le QV, Nguyen TP, Jang HW, Kim SY (2014) The use of UV-ozone-treated MoS2 nanosheets for extended air stability in organic photovoltaic cells. Phys Chem Chem Phys 16:13123–13128

    Article  CAS  Google Scholar 

  17. Niu L, Li K, Zhen H, Chui YS, Zhang W, Yan F et al (2014) Salt-assisted high-throughput synthesis of single- and few-layer transition metal dichalcogenides and their application in organic solar cells. Small 10:4651–4657

    Article  CAS  Google Scholar 

  18. Yun JM, Noh YJ, Lee CH, Na SI, Lee S, Jo SM et al (2014) Exfoliated and partially oxidized MoS2 nanosheets by one-pot reaction for efficient and stable organic solar cells. Small 10:2319–2324

    Article  CAS  Google Scholar 

  19. Liu W, Yang X, Zhang Y, Xu M, Chen H (2014) Ultra-stable two-dimensional MoS2 solution for highly efficient organic solar cells. RSC Adv 4:32744–32748

    Article  CAS  Google Scholar 

  20. Le QV, Nguyen TP, Kim SY (2014) UV-ozone-treated WS2 hole-extraction layer in organic photovoltaic cells. Phys Status Solidi RRL 8:390–394

    Article  CAS  Google Scholar 

  21. Yang X, Liu W, Xiong M, Zhang Y, Liang T, Yang J et al (2014) Au nanoparticles on ultrathin MoS2 sheets for plasmonic organic solar cells. J Mater Chem A 2:14798–14806

    Article  CAS  Google Scholar 

  22. Yang X, Fu W, Liu W, Hong J, Cai Y, Jin C et al (2014) Engineering crystalline structures of two-dimensional MoS2 sheets for high-performance organic solar cells. J Mater Chem A 2:7727–7733

    Article  CAS  Google Scholar 

  23. Kwon KC, Kim C, Le QV, Gim S, Jeon JM, Ham JY et al (2015) Synthesis of atomically thin transition metal disulfides for charge transport layers in optoelectronic devices. ACS Nano 9:4146–4155

    Article  CAS  Google Scholar 

  24. Le QV, Nguyen TP, Park M, Sohn W, Jang HW, Kim SY (2016) Bottom-up synthesis of mesx nanodots for optoelectronic device applications. Adv Opt Mater 4:1796–1804

    Article  Google Scholar 

  25. Ding Z, Hao Z, Meng B, Xie Z, Liu J, Dai L (2015) Few-layered graphene quantum dots as efficient hole-extraction layer for high-performance polymer solar cells. Nano Energy 15:186–192

    Article  CAS  Google Scholar 

  26. Yang HB, Dong Y, Wang X, Khoo S, Liu B (2014) Cesium carbonate functionalized graphene quantum dots as stable electron-selective layer for improvement of inverted polymer solar cells. ACS Appl Mater Interfaces 6:1092–1099

    Article  CAS  Google Scholar 

  27. Xing W, Chen Y, Wang X, Lv L, Quyang X, Ge Z et al (2016) MoS2 quantum dots with a tunable work function for high-performance organic solar cells. ACS Appl Mater Interfaces 8:26916–26923

    Article  CAS  Google Scholar 

  28. Xing W, Chen Y, Wu X, Xu X, Ye P, Zhu T et al (2017) PEDOT:PSS-assisted exfoliation and functionalization of 2D nanosheets for high-performance organic solar cells. Adv Funct Mater 27:1701622

    Article  Google Scholar 

  29. Le QV, Nguyen TP, Choi KS, Cho YH, Hong YJ, Kim SY (2014) Dual use of tantalum disulfides as hole and electron extraction layers in organic photovoltaic cells. Phys Chem Chem Phys 16:25468–25472

    Article  CAS  Google Scholar 

  30. Chuang MK, Yang SS, Chen FC (2015) Metal nanoparticle-decorated two-dimensional molybdenum sulfide for plasmonic-enhanced polymer photovoltaic devices. Materials 8:5414–5425

    Article  CAS  Google Scholar 

  31. Petridis C, Savva K, Kymakis E, Stratakis E (2017) Laser generated nanoparticles based photovoltaics. J Colloid Interface Sci 489:28–37

    Article  CAS  Google Scholar 

  32. Kakavelakis G, Petridis C, Kymakis E (2017) Recent advances in plasmonic metal and rare-earth-element upconversion nanoparticle doped perovskite solar cells. J Mater Chem A 5:21604–21624

    Article  CAS  Google Scholar 

  33. Kohler A, Bassler H (2015) Electronic processes in organic semiconductors: an introduction. Wiley-VCH, Hoboken, NJ

    Book  Google Scholar 

  34. Foster S, Deledalle F, Mitani A, Kimura T, Kim K-B, Okachi T et al (2014) Electron collection as a limit to polymer: PCBM solar cell efficiency: effect of blend microstructure on carrier mobility and device performance in PTB7:PCBM. Adv Energy Mater 4:1400311

    Article  Google Scholar 

  35. Mikhnenko OV, Azimi H, Schrarber M, Morana M, Blom PW, Loi MA (2012) Exciton diffusion length in narrow bandgap polymers. Energy Environ Sci 5:6960–6965

    Article  CAS  Google Scholar 

  36. Stylianakis M, Konios D, Petridis C, Kakavelakis G, Stratakis E, Kymakis E (2017) Ternary solution-processed organic solar cells incorporating 2D materials. 2D Mater 4:042005

    Article  Google Scholar 

  37. Sygletou M, Tzourmpakis P, Petridis C, Konios D, Fotakis C, Kymakis E et al (2016) Laser induced nucletion of plasmonic nanoparticles on two-dimensional nanosheets for organic photovoltaics. J Mater Chem A 4:1020–1027

    Article  CAS  Google Scholar 

  38. Kakavelakis G, Castillo AE, Pellegrini V, Ansaldo A, Tzourmpakis P, Brescia R et al (2017) Size-tuning of WSe2 flakes for high efficiency inverted organic solar cells. ACS Nano 11:3517–3531

    Article  CAS  Google Scholar 

  39. Petridis C, Kakavelakis G, Kymakis E (2018) The renaissance of graphene-related materials in photovoltaics with the emergence of metal-halide perovskite solar cells. Energy Environ Sci 11:1030–1061

    Article  CAS  Google Scholar 

  40. Matte HS, Gomathi A, Manna AK, Late DJ, Datta R, Pati SK et al (2010) MoS2 and WS2 analogues of graphene. Angew Chem Int Ed 49:4059–4062

    Article  CAS  Google Scholar 

  41. Peng B, Yu G, Zhao Y, Xu Q, Xing G, Liu X et al (2016) Achieving ultrafast hole transfer at the monolayer MoS2 and CH3NH3PbI3 perovskite interface by defect engineering. ACS Nano 10:6383–6391

    Article  CAS  Google Scholar 

  42. Marchioro A, Teuscher J, Friedrich D, Kunst M, Van de Krol R, Moehl T, Gratzel M et al (2014) Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nat Photonics 8:250–255

    Article  CAS  Google Scholar 

  43. Kim YG, Kwon KC, Le QV, Hong K, Jang HW, Kim SY (2016) Atomically thin two-dimensional materials as hole extraction layers in organolead halide perovskite photovoltaic cells. J Power Sources 319:1–8

    Article  CAS  Google Scholar 

  44. Capasso A, Matteocci F, Najafi L, Prato M, Buha J, Cina L et al (2016) Solar cells: few-layer MoS2 flakes as active buffer layer for stable perovskite solar cells. Adv Energy Mater 6:1600920

    Article  Google Scholar 

  45. Dasgupta U, Chatterjee S, Pal AJ (2017) Thin-film formation of 2D MoS2 and its application as a hole-transport layer in planar perovskite solar cells. Sol Energy Mater Sol Cells 172:353–360

    Article  CAS  Google Scholar 

  46. Huang P, Wang ZW, Liu Y, Zhang KC, Yuan L, Zhou Y et al (2017) Water-soluble 2D transition metal dichalcogenides as the hole-transport layer for highly efficient and stable p–i–n perovskite solar cells. ACS Appl Mater & Interfaces 9:25323–25331

    Article  CAS  Google Scholar 

  47. Dai R, Wang Y, Wang J, Deng X (2017) Metal–organic-compound-modified MoS2 with enhanced solubility for high-performance perovskite solar cells. Chemsuschem 10:2869

    Article  CAS  Google Scholar 

  48. Kakavelakis G, Paradisanos I, Paci B, Generosi A, Papachatzakis M, Maksudov T et al (2018) Extending the continuous operating lifetime of perovskite solar cells with a molybdenum disulfide hole extraction interlayer. Adv Energy Mater 8:1702287

    Article  Google Scholar 

  49. Kohnehpoushi S, Nazari P, Nejand BA, Eskandar M (2018) MoS2: a two-dimensional hole-transporting material for high-efficiency, low-cost perovskite solar cells. Nanotechnology 29:205201

    Article  Google Scholar 

  50. Ahmed MI, Hussain Z, Khalid A, Amin HMN, Habib A (2016) Absorption enhancement in CH3NH3PbI3 solar cell using a TiO2/MoS2 nanocomposite electron selective contact. Mater Res Express 3:045022

    Article  Google Scholar 

  51. Huang P, Yuan L, Zhang K, Chen Q, Zhou Y, Song B et al (2018) Room-temperature and aqueous solution-processed two-dimensional TiS2 as an electron transport layer for highly efficient and stable planar n–i–p perovskite solar cells. ACS Appl Mater Interfaces 10:14796–14802

    Article  CAS  Google Scholar 

  52. Yin G, Zhao H, Feng J, Sun J, Yan J, Liu Z et al (2018) Low-temperature and facile solution-processed two-dimensional TiS2 as an effective electron transport layer for UV-stable planar perovskite solar cells. J Mater Chem A 6:9132–9138

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Strategic Partnership Alliance Project, entitled “Electronics Beyond Silicon Era”—ELBYSIER (2015-1-ELKA203-013988) under the Erasmus Plus Program for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Kakavelakis or K. Petridis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kakavelakis, G., Gouda, L., Tischler, Y., Kaliakatsos, I., Petridis, K. (2019). 2D Transition Metal Dichalcogenides for Solution-Processed Organic and Perovskite Solar Cells. In: Arul, N., Nithya, V. (eds) Two Dimensional Transition Metal Dichalcogenides. Springer, Singapore. https://doi.org/10.1007/978-981-13-9045-6_7

Download citation

Publish with us

Policies and ethics