Skip to main content

Laminar Burning Speed Study of Alternative Fuel Air Diluent Mixtures at High Pressures and Temperatures

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Alternative fuel has attracted large focus because of environmental issues. Laminar burning speed results of syngas/air/diluent, syngas/O2/He and GTL/air/diluent premixed flames have been reviewed. In this paper, syngas consists of hydrogen and carbon monoxide and GTL (gas to liquid) is a blend of 43% n-dodecane, 25% n-decane, and 32% iso-octane. The diluent with the same specific heat as the burned gases consists of 14% carbon dioxide and 86% nitrogen. Experiments were carried out using a cylindrical chamber to observe the flame images and to measure pressure rise. The pressure rise data have been used to calculate the laminar burning speed by an integral-based multi-shell thermodynamic model for the low stretch and smooth flames. Power-law correlations were developed for experimental burning speed results of syngas/air/diluent, syngas/O2/He and GTL/air/diluent mixtures over a wide range of equivalence ratios, temperatures, pressures, and diluent concentrations. Kinetics simulations calculated by 1-D steady-state flame code from CANTERA were compared with various experimental burning speed results. The measured burning speed values are very close to the simulation calculations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

\( A_{\text{b}} \) :

Burned gas area

a :

Fitted constant

b :

Fitted constant

C :

Hydrogen percentage

D :

Diluent concentration

\( E_{\text{b}} \) :

Burned gas energy

\( E_{\text{i}} \) :

Initial energy

\( E_{\text{u}} \) :

Unburned gas energy

\( E_{\text{eb}} \) :

Electrodes boundary energy defect

\( E_{\text{ph}} \) :

Preheat zone energy defect

\( E_{\text{wb}} \) :

Wall boundary energy defect

\( e_{\text{b}} \) :

Burned gas specific energy

\( e_{\text{u}} \) :

Unburned gas specific energy

\( e_{\text{bs}} \) :

Isentropically compressed burned gas specific energy

\( e_{\text{us}} \) :

Isentropically compressed unburned gas specific energy

I :

Radiation intensity

j :

Number of narrow bands

\( k_{n} \) :

K-distribution absorption coefficient

M :

Number of directions

m :

Total mass

\( m_{\text{b}} \) :

Burned gas mass

\( m_{\text{u}} \) :

Unburned gas mass

\( \dot{m}_{\text{b}} \) :

Mass burning rate

N :

Number of Gaussian quadrature points

P :

Mixture pressure

\( P_{0} \) :

Reference pressure

p :

Pressure

\( p_{\text{i}} \) :

Initial pressure

\( Q_{\text{e}} \) :

Energy loss to electrodes

\( Q_{\text{r}} \) :

Radiation energy loss

\( Q_{\text{w}} \) :

Energy loss to wall

R :

Specific gas constant

r :

Flame radius

\( r_{\text{e}} \) :

Electrode radius

\( S_{\text{u}} \) :

Laminar burning speed

\( S_{\text{uo}} \) :

Reference laminar burning speed

T :

Temperature

\( T_{\text{b}} \) :

Burned gas temperature

\( T_{\text{i}} \) :

Initial temperature

\( T_{\text{u}} \) :

Unburned gas temperature

\( T_{{{\text{u}}0}} \) :

Reference temperature

t :

Time

V :

Energy source volume

\( V_{\text{b}} \) :

Burned gas volume

\( V_{\text{c}} \) :

Chamber volume

\( V_{\text{e}} \) :

Electrodes volume

\( V_{\text{i}} \) :

Initial volume

\( V_{\text{u}} \) :

Unburned gas volume

\( V_{\text{eb}} \) :

Electrodes boundary displacement volume

\( V_{\text{ph}} \) :

Preheat zone displacement volume

\( V_{\text{wb}} \) :

Wall boundary displacement volume

\( v_{\text{b}} \) :

Burned gas specific volume

\( v_{\text{u}} \) :

Unburned gas specific volume

\( v_{\text{bs}} \) :

Isentropically compressed burned gas specific volume

\( v_{\text{us}} \) :

Isentropically compressed unburned gas specific volume

\( x_{\text{b}} \) :

Burned gas mass fraction

\( \dot{x}_{\text{b}} \) :

Rate of burned gas mass fraction

\( \alpha \) :

Fitted constant

\( \alpha_{0} \) :

Fitted constant

\( \alpha_{1} \) :

Fitted constant

\( \alpha_{2} \) :

Fitted constant

\( \alpha_{3} \) :

Fitted constant

\( \beta \) :

Fitted constant

\( \beta_{0} \) :

Fitted constant

\( \beta_{1} \) :

Fitted constant

\( \beta_{2} \) :

Fitted constant

\( \beta_{3} \) :

Fitted constant

\( \gamma \) :

Fitted constant

\( \gamma_{1} \) :

Fitted constant

\( \gamma_{2} \) :

Fitted constant

\( \theta \) :

Fitted constant

\( \theta_{0} \) :

Fitted constant

\( \theta_{1} \) :

Fitted constant

\( \theta_{2} \) :

Fitted constant

\( \theta_{3} \) :

Fitted constant

\( \nu \) :

Wave number

\( \rho_{\text{u}} \) :

Unburned gas density

\( \phi \) :

Equivalence ratio

\( \omega_{n} \) :

Weight function

References

  1. Natarajan J, Lieuwen T, Seitzman J (2007) Laminar flame speeds of H2/CO mixtures: effect of CO2 dilution, preheat temperature, and pressure. Combust Flame 151:104–119

    Article  Google Scholar 

  2. Prathap C, Ray A, Ravi MR (2008) Investigation of nitrogen dilution effects on the laminar burning velocity and flame stability of syngas fuel at atmospheric condition. Combust Flame 155(1–2):145–160

    Article  Google Scholar 

  3. Sun H, Yang SI, Jomaas G, Law CK (2007) High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion. Proc Combust Inst 31:439–446

    Article  Google Scholar 

  4. Som S, Ramirez AI, Hagerdorn J, Saveliev A, Aggarwal SK (2008) A numerical and experimental study of counterflow syngas flames at different pressures. Fuel 87:319–334

    Article  Google Scholar 

  5. Natarajan J, Kochar Y, Lieuwen T, Seitzman J (2009) Pressure and preheat dependence of laminar flame speeds of H2/CO/CO2/O2/He mixtures. Proc Combust Inst 32(1):1261–1268

    Article  Google Scholar 

  6. Huang Y, Sung CJ, Eng JA (2004) Laminar flame speeds of primary reference fuels and reformer gas mixtures. Combust Flame 139:239–251

    Article  Google Scholar 

  7. Park J, Lee DH, Yoon SH, Vu TM, Yun JH, Keel SI (2009) Effects of Lewis number and preferential diffusion on flame characteristics in 80%H2/20%CO syngas counterflow diffusion flames diluted with He and Ar. Int J Hydrogen Energy 34(3):1578–1584

    Article  Google Scholar 

  8. Bao B, El-Halwagi MM, Elbashir NO (2010) Simulation, integration, and economic analysis of gas-to-liquid processes. Fuel Process Technol 91(7):703–713

    Article  Google Scholar 

  9. Abdel-Kreem M, Bassyouni M, Abdel-Hamid SMS, Abdel-Aal H (2009) The role of GTL technology as an option to exploit natural gas resources. Open Fuel Cells J 2(1):5–10

    Article  Google Scholar 

  10. Udaeta MEM, Burani GF, Arzabe Maure JO, Oliva CR (2007) Economics of secondary energy from GTL regarding natural gas reserves of bolivia. Energy Policy 35(8):4095–4106

    Article  Google Scholar 

  11. Economides M (2005) The economics of gas to liquids compared to liquefied natural gas. World Energy 8(1):136–140

    Google Scholar 

  12. Hobbs HOJ, Adair LS (2012) Gas-to-liquids plants offer great ROI. The American Oil & Gas Reporter, Haysville

    Google Scholar 

  13. Moon G, Lee Y, Choi K, Jeong D (2010) Emission characteristics of diesel, gas to liquid, and biodiesel-blended fuels in a diesel engine for passenger cars. Fuel 89(12):3840–3846

    Article  Google Scholar 

  14. Hassaneen A, Munack A, Ruschel Y, Schroeder O, Krahl J (2012) Fuel economy and emission characteristics of gas-to-liquid (GTL) and rapeseed methyl ester (RME) as alternative fuels for diesel engines. Fuel 97:125–130

    Article  Google Scholar 

  15. Abu-Jrai A, Rodriguez-Fernandez J, Tsolakis A, Megaritis A, Theinnoi K, Cracknell RF, Clark RH (2009) Performance, combustion and emissions of a diesel engine operated with reformed EGR. Comparison of diesel and GTL fueling. Fuel 88(6):1031–1041

    Article  Google Scholar 

  16. Li X, Huang Z, Wang J, Zhang W (2007) Particle size distribution from a GTL engine. Sci Total Environ 382(2–3):295–303

    Google Scholar 

  17. Alleman TL, Eudy L, Miyasato M, Oshinuga A, Allison S, Corcoran T, Chatterjee S, Jacobs T, Matthey J, Cherrillo RA, Clark R, Virrels I, Nine R, Wayne S, Lansing R (2004) Fuel property, emission test, and operability results from a fleet of class 6 vehicles operating on gas-to-liquid fuel and catalyzed diesel particle filters south coast air quality management district. SAE technical paper no. 2004-01-2959

    Google Scholar 

  18. Alleman TL, Tennant CJ, Hayes RR, Barton G, Rumminger M, Duggal V, Nelson C, May M, Cherrillo RA (2005) Achievement of low emissions by engine modification to utilize gas-to-liquid fuel and advanced emission controls on a class 8 truck. SAE technical paper no. 2005-01-3766

    Google Scholar 

  19. Alleman TL, Barnitt R, Eudy L, Corcoran T, Cherrillo RA, Clark N, Wayne WS (2005) Final operability and chassis emissions results from a fleet of class 6 trucks operating on gas-to-liquid fuel and catalyzed diesel particle filters. SAE technical paper no. 2005-01-3769

    Google Scholar 

  20. Mancaruso E, Vaglieco BM (2012) Premixed combustion of GTL and RME fuels in a single cylinder research engine. Appl Energy 91(1):385–394

    Article  Google Scholar 

  21. Hajialimohammadi A, Ahmadisoleymani S, Abdullah A, Askari O, Rezai F (2012) Design and manufacturing of a constant volume test combustion chamber for jet and flame visualization of CNG direct injection. Appl Mech Mater 217–219:2539–2545

    Article  Google Scholar 

  22. Kahandawala MSP, DeWitt MJ, Corporan E, Sidhu SS (2008) Ignition and emission characteristics of surrogate and practical jet fuels. Energy Fuels 22(6):3673–3679

    Article  Google Scholar 

  23. Balagurunathan J, Flora G, Saxena S, Kahandawala M, DeWitt M, Sidhu S, Corporan E (2011) Ignition delay times of a range of alternate jet fuels and surrogate fuel candidate hydrocarbons under fuel-lean conditions: a shock tube study. AIAA paper no. 2011-696

    Google Scholar 

  24. Kumar K, Sung CJ (2010) A comparative experimental study of the autoignition characteristics of alternative and conventional jet fuel/oxidizer mixtures. Fuel 89(10):2853–2863

    Article  Google Scholar 

  25. Kumar K, Sung CJ, Hui X (2011) Laminar flame speeds and extinction limits of conventional and alternative jet fuels. Fuel 90(3):1004–1011

    Article  Google Scholar 

  26. Wang H, Oehlschlaeger MA (2012) Autoignition studies of conventional and Fischer-Tropsch jet fuels. Fuel 98:249–258

    Article  Google Scholar 

  27. Kannaiyan K, Sadr R (2014) Experimental investigation of spray characteristics of alternative aviation fuels. Energy Convers Manage 88:1060–1069

    Article  Google Scholar 

  28. Fyffe D, Moran J, Kannaiyan K, Sadr R, Al-Sharshani A (2011) Effect of GTL-like jet fuel composition on GT engine altitude ignition performance: part I combustor operability. ASME paper no. GT2011-45487

    Google Scholar 

  29. Mosbach T, Gebel GC, Le Clercq P, Sadr R, Kannaiyan K, Al-Sharshani A (2011) Investigation of GTL-like jet fuel composition on GT engine altitude ignition and combustion performance: part II detailed diagnostics. ASME paper no. GT2011-45510

    Google Scholar 

  30. Mclean IC, Smith DB, Taylor SC (1994) The use of carbon monoxide/hydrogen burning velocities to examine the rate of the CO + OH reaction. In: 25th symposium on combustion, pp 749–757

    Article  Google Scholar 

  31. Hassan MI, Aung KT, Faeth GM (1997) Properties of laminar premixed CO/H2/air flames at various pressures. J Propuls Power 13(2):239–245

    Article  Google Scholar 

  32. Prathap C, Ray A, Ravi MR (2012) Effects of dilution with carbon dioxide on the laminar burning velocity and flame stability of H2/CO mixtures at atmospheric condition. Combust Flame 159(2):482–492

    Article  Google Scholar 

  33. Dong C, Zhou Q, Zhao Q, Zhang Y, Xu T, Hui S (2009) Experimental study on the laminar flame speed of hydrogen/carbon monoxide/air mixtures. Fuel 88(10):1858–1863

    Article  Google Scholar 

  34. Vu TM, Park J, Kwon OB, Bae DS, Yun JH, Keel SI (2010) Effects of diluents on cellular instabilities in outwardly propagating spherical syngas-air premixed flames. Int J Hydrogen Energy 35(8):3868–3880

    Article  Google Scholar 

  35. Bouvet N, Chauveau C, Gökalp I, Halter F (2011) Experimental studies of the fundamental flame speeds of syngas (H2/CO)/air mixtures. Proc Combust Inst 33:913–920

    Article  Google Scholar 

  36. Bouvet N, Chauveau C, Gökalp I, Lee SY, Santoro RJ (2011) Characterization of syngas laminar flames using the Bunsen burner configuration. Int J Hydrog Energy 36(1):992–1005

    Article  Google Scholar 

  37. Burbano HJ, Pareja J, Amell AA (2011) Laminar burning velocities and flame stability analysis of H2/CO/air mixtures with dilution of N2 and CO2. Int J Hydrog Energy 36(4):3232–3242

    Article  Google Scholar 

  38. Burbano HJ, Pareja J, Amell AA (2011) Laminar burning velocities and flame stability analysis of syngas mixtures at sub-atmospheric pressures. Int J Hydrog Energy 36(4):3243–3252

    Article  Google Scholar 

  39. Lapalme D, Seers P (2014) Influence of CO2, CH4, and initial temperature on H2/CO laminar flame speed. Int J Hydrogen Energy 39(7):3477–3486

    Article  Google Scholar 

  40. Singh D, Nishiie T, Tanvir S, Qiao L (2012) An experimental and kinetic study of syngas/air combustion at elevated temperatures and the effect of water addition. Fuel 94:448–456

    Article  Google Scholar 

  41. Fu J, Tang C, Jin W, Thi LD, Huang Z, Zhang Y (2013) Study on laminar flame speed and flame structure of syngas with varied compositions using OH-PLIF and spectrograph. Int J Hydrogen Energy 38:1636–1643

    Article  Google Scholar 

  42. Ai Y, Zhou Z, Chen Z, Kong W (2014) Laminar flame speed and Markstein length of syngas at normal and elevated pressures and temperatures. Fuel 137:339–345

    Article  Google Scholar 

  43. Li H, Li G, Sun Z, Zhai Y, Zhou Z (2014) Measurement of the laminar burning velocities and Markstein lengths of lean and stoichiometric syngas premixed flames under various hydrogen fractions. Int J Hydrog Energy 39(30):17371–17380

    Article  Google Scholar 

  44. Han M, Ai Y, Chen Z, Kong W (2015) Laminar flame speeds of H2/CO with CO2 dilution at normal and elevated pressures and temperatures. Fuel 148:32–38

    Article  Google Scholar 

  45. Wang ZH, Weng WB, He Y, Li ZS, Cen KF (2015) Effect of H2/CO ratio and N2/CO2 dilution rate on laminar burning velocity of syngas investigated by direct measurement and simulation. Fuel 141(55):285–292

    Article  Google Scholar 

  46. Li H, Li G, Sun Z, Zhou Z, Li Y, Yuan Y (2016) Investigation on dilution effect on laminar burning velocity of syngas premixed flames. Energy 112:146–152

    Article  Google Scholar 

  47. Xie Y, Wang J, Cai X, Huang Z (2016) Self-acceleration of cellular flames and laminar flame speed of syngas/air mixtures at elevated pressures. Int J Hydrogen Energy 41:18250–18258

    Article  Google Scholar 

  48. Askari O, Moghaddas A, Alholm A, Vein K, Alhazmi B, Metghalchi H (2106) Laminar burning speed measurement and flame instability study of H2/CO/air mixtures at high temperatures and pressures using a novel multi-shell model. Combust Flames 168:20–31

    Article  Google Scholar 

  49. Askari O, Vien K, Wang Z, Sirio M, Metghalchi H (2016) Exhaust gas recirculation effects on flame structure and laminar burning speeds of H2/CO/air flames at high pressures and temperatures. Appl Energy 179:451–462

    Article  Google Scholar 

  50. Askari O, Wang Z, Vien K, Sirio M, Metghalchi H (2017) On the flame stability and laminar burning speeds of syngas/O2/He premixed flame. Fuel 190:90–103

    Article  Google Scholar 

  51. Singh D, Nishiie T, Qiao L (2010) Laminar burning speeds and Markstein lengths of n-Decane/Air, n-Decane/O2/He, Jet-A/Air and S-8/Air Flames. AIAA paper no. 2010-951

    Google Scholar 

  52. Kick T, Herbst J, Kathrotia T, Marquetand J, Braun-Unkhoff M, Naumann C, Riedel U (2012) An experimental and modeling study of burning velocities of possible future synthetic jet fuels. Energy 43(1):111–123

    Article  Google Scholar 

  53. Ji C, Wang YL, Egolfopoulos FN (2011) Flame studies of conventional and alternative jet fuels. J Propul Power 27(4):856–863

    Article  Google Scholar 

  54. Hui X, Kumar K, Sung CJ, Edwards T, Gardner D (2012) Experimental studies on the combustion characteristics of alternative jet fuels. Fuel 98:176–182

    Article  Google Scholar 

  55. Hui X, Sung CJ (2013) Laminar flame speeds of transportation-relevant hydrocarbons and jet fuels at elevated temperatures and pressures. Fuel 109:191–200

    Article  Google Scholar 

  56. Vukadinovic V, Habisreuther P, Zarzalis N (2012) Experimental study on combustion characteristics of conventional and alternative liquid fuels. ASME J Eng Gas Turbines Power 134(12):121504

    Article  Google Scholar 

  57. Dagaut P, Karsenty F, Dayma G, Dievart P, Hadj-Ali K, Mze-Ahmed A, Braun-Unkhoff M, Herzler J, Kathrotia T, Kick T, Naumann C, Riedel U, Thomas L (2014) Experimental and detailed kinetic model for the oxidation of a gas to liquid (GtL) jet fuel. Combust Flame 161(3):835–847

    Article  Google Scholar 

  58. Dagaut P, Dayma G, Dievart P, Hadj-Ali K, Mze-Ahmed A (2014) Combustion of a gas-to-liquid based alternative jet fuel: experimental and detailed kinetic modeling. Combust Sci Technol 186(10–11):1275–1283

    Article  Google Scholar 

  59. Yu G, Askari O, Hadi F, Wang Z, Metghalchi H, Kannaiyan K, Sadr R (2017) Theoretical prediction of laminar burning speed and ignition delay time of gas-to-liquid fuel. ASME J Energy Resour Technol 139(2):022202–022206

    Article  Google Scholar 

  60. Wang Z, Alswat M, Yu G, Allehaibi MO, Metghalchi H (2017) Flame structure and laminar burning speed of gas to liquid fuel air mixtures at moderate pressures and high temperatures. Fuel 209:529–537

    Article  Google Scholar 

  61. Wang Z, Bai Z, Yelishala SC, Yu G, Metghalchi H (2018) Effects of diluent on laminar burning speed and flame structure of gas to liquid fuel air mixtures at high temperatures and moderate pressures. Fuel 231:204–214

    Article  Google Scholar 

  62. Naik CV, Puduppakkam KV, Modak A, Meeks E, Wang YL, Feng Q (2011) Detailed chemical kinetic mechanism for surrogates of alternative jet fuels. Combust Flame 158(3):434–445

    Article  Google Scholar 

  63. Parsinejad F, Matlo M, Metghalchi H (2004) A mathematical model for Schlieren and Shadowgraph images of transient expanding spherical thin flames. J Eng Gas Turbines Power 126(2):241–247

    Article  Google Scholar 

  64. Parsinejad F, Keck JC, Metghalchi H (2007) On the location of flame edge in Shadowgraph pictures of spherical flames: a theoretic and experimental study. Exp Fluids 43(6):887–894

    Article  Google Scholar 

  65. Askari O, Metghalchi H, Hannani SK, Moghaddas A, Ebrahimi R, Hemmati H (2012) Fundamental study of spray and partially premixed combustion of methane/air mixture. J Energy Res Technol 135(2):021001

    Article  Google Scholar 

  66. Askari O, Metghalchi H, Hannani SK, Hemmati H, Ebrahimi R (2014) Lean partially premixed combustion investigation of methane direct-injection under different characteristic parameters. J Energy Resour Technol Trans ASME 136(2):1–7

    Article  Google Scholar 

  67. Bradley D, Gaskell PH, Gu XJ (1996) Burning velocities, Markstein lengths, and flame quenching for spherical methane-air flames: a computational study. Combust Flame 198:176–198

    Article  Google Scholar 

  68. Eisazadeh-Far K, Parsinejad F, Metghalchi H (2010) Flame structure and laminar burning speeds of JP-8/air premixed mixtures at high temperatures and pressures. Fuel 89(5):1041–1049

    Article  Google Scholar 

  69. Burke MP, Chen Z, Ju Y, Dryer FL (2009) Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames. Combust Flame 156(4):771–779

    Article  Google Scholar 

  70. Trochim WM, Donnelly JP (2006) The research methods knowledge base, 3rd edn. Atomic Dog, Cincinnati

    Google Scholar 

  71. Metghalchi M, Keck JC (1980) Laminar burning velocity of propane-air mixtures at high temperature and pressure. Combust Flame 38:143–154

    Article  Google Scholar 

  72. Metghalchi M, Keck JC (1982) Burning velocities of mixtures of air with methanol, isooctane, and indolene at high pressure and temperature. Combust Flame 48:191–210

    Article  Google Scholar 

  73. Elia M, Ulinski M, Metghalchi M (2001) Lamianr burning velocity of methane-air-diluent mixtures. J Eng Gas Turbines Power 123(1):190–196

    Article  Google Scholar 

  74. Parsinejad F, Arcari C, Metghalchi H (2006) Flame structure and burning speed of JP-10 air mixtures. Combust Sci Technol 178:975–1000

    Article  Google Scholar 

  75. Rahim F, Eisazadeh-Far K, Parsinejad F, Andrews RJ, Metghalchi H (2008) A thermodynamic model to calculate burning speed of methane-air-diluent mixtures. Int J Thermodyn 11:151–161

    Google Scholar 

  76. Eisazadeh-Far K, Moghaddas A, Rahim F, Metghalchi H (2010) Burning speed and entropy production calculation of a transient expanding spherical laminar flame using a thermodynamic model. Entropy 12(12):2485–2496

    Article  Google Scholar 

  77. Eisazadeh-Far K, Parsinejad F, Metghalchi H, Keck JC (2010) On flame kernel formation and propagation in premixed gases. Combust Flame 157(12):2211–2221

    Article  Google Scholar 

  78. Eisazadeh-Far K, Moghaddas A, Metghalchi H, Keck JC (2011) The effect of diluent on flame structure and laminar burning speeds of JP-8/oxidizer/diluent premixed flames. Fuel 90(4):1476–1486

    Article  Google Scholar 

  79. Rokni E, Moghaddas A, Askari O, Metghalchi H (2015) Measurement of laminar burning speeds and investigation of flame stability of acetylene (C2H2)/air mixtures. ASME J Energy Resour Technol 137(1):012204

    Article  Google Scholar 

  80. Chen Z, Qin X, Xu B, Ju Y, Liu F (2007) Studies of radiation absorption on flame speed and flammability limit of CO2 diluted methane flames at elevated pressures. Proc Combust Inst 31:2693–2700

    Article  Google Scholar 

  81. Riviere P, Soufiani A (2012) Updated band model parameters for H2O, CO2, CH4 and CO radiation at high temperature. Int J Heat Mass Transf 55:3349–3358

    Article  Google Scholar 

  82. Chen Z, Burke MP, Ju Y (2009) Effects of compression and stretch on the determination of laminar flame speeds using propagating spherical flames. Combust Theor Model 13(2):343–364

    Article  MATH  Google Scholar 

  83. Davis SG, Joshi AV, Wang H, Egolfopoulos F, Troe J, Li J, Kumaran SS, Smith D, Dryer FL (2005) An optimized kinetic model of H2/CO combustion. Proc Combust Inst 30(1):1283–1292

    Article  Google Scholar 

  84. Li J, Zhao Z, Kazakov A, Chaos M, Dryer FL, James J, Scire J (2007) A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion. Int J Chem Kinet 39:109–136

    Article  Google Scholar 

  85. Keromnes A, Metcalfe WK, Heufer KA, Donohoe N, Das AK, Sung CJ, Herzler J, Naumann C, Griebel P, Mathieu O, Krejci MC, Petersen EI, Pitz WJ, Curran HJ (2013) An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures. Combust Flame 160(6):995–1011

    Article  Google Scholar 

  86. Goodwin D, Moffat H, Speth R (2015) Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. http://www.cantera.org

  87. Yu J, Wang Z, Wang W, Gou X (2016) Surrogate definition and chemical kinetic modeling for Fischer-Tropsch fuels. Energy Fuels 30(2):1375–1382

    Google Scholar 

  88. Ranzi E, Frassoldati A, Grana R, Cuoci A, Faravelli T, Kelley AP (2012) Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels. Prog Energy Combust Sci 38:468–501

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziyu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Z., Yu, G., Metghalchi, H. (2020). Laminar Burning Speed Study of Alternative Fuel Air Diluent Mixtures at High Pressures and Temperatures. In: Gupta, A., De, A., Aggarwal, S., Kushari, A., Runchal, A. (eds) Innovations in Sustainable Energy and Cleaner Environment. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-9012-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9012-8_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9011-1

  • Online ISBN: 978-981-13-9012-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics