Skip to main content

Hybrid Approach in Microscale Transport Phenomena: Application to Biodiesel Synthesis in Micro-reactors

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

A hybrid engineering approach to the study of transport phenomena, based on the synergy among computational, analytical, and experimental methodologies is reviewed. The focus of the chapter is on fundamental analysis and proof of concept developments in the use of nano- and microtechnologies for energy efficiency and heat and mass transfer enhancement applications. The hybrid approach described herein combines improved lumped-differential modeling, hybrid numerical-analytical solution methods, mixed symbolic–numerical computations, and advanced experimental techniques for microscale transport phenomena. An application dealing with micro-reactors for continuous synthesis of biodiesel is selected to demonstrate the instrumental role of the hybrid approach in achieving the improved design and enhanced performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. US NIC (United States National Intelligence Council) (2012) Global trends 2030: alternative worlds. US NIC, Washington DC, USA, pp 137

    Google Scholar 

  2. United Nations, The Sustainable Development Goals Report 2016, New York, https://unstats.un.org/sdgs/report/2016/The%20Sustainable%20Development%20Goals%20Report%202016.pdf (2016)

  3. Ohadi MM, Choo K, Dessiatoun S, Cetegen E (2013) Next generation microchannel heat exchangers. Springer Briefs in Thermal Engineering and Applied Science, Springer

    Google Scholar 

  4. Steinke ME, Kandlikar SG, Single-phase heat transfer enhancement techniques in micro-channel and mini-channel flow. In: Proceedings of the international conference on micro-channels and mini-channels. ASME, Rochester, NY, June 2004

    Google Scholar 

  5. Yener Y, Kakaç S, Avelino M, Okutucu T (2005) Single-phase forced convection in micro-channels—a state-of-the-art review. In: Kakaç S, Vasiliev LL, Bayazitoglu Y, Yener Y (eds) Microscale heat transfer—fundamentals and applications. NATO ASI Series, Kluwer Academic Publishers, Netherlands, pp 1–24

    Google Scholar 

  6. Sobhan CB, Peterson GP (2008) Microscale and nanoscale heat transfer: fundamentals and engineering applications. CRC Press, Boca Raton

    Book  Google Scholar 

  7. Kockmann N (2008) Transport phenomena in micro process engineering. Springer, Berlin

    Google Scholar 

  8. Cotta RM, Mota CAA, Naveira-Cotta CP, Nunes JS, Avelino MR, Castellões FV, Quaresma JNN (2009) Heat transfer enhancement in laminar forced convection: nanofluids, microchannels, structured surfaces, invited keynote lecture, ICHMT digital library. In: Proceedings of international symposium on convective heat and mass transfer in sustainable energy—CONV-09, 38p. Yasmine Hammamet, Tunisia

    Google Scholar 

  9. Rebay M, Kakaç S, Cotta RM (eds) (2016) Microscale and nanoscale convective heat transfer: concepts, analysis, and applications. CRC Press, Boca Raton. ISBN 978-1-498-73630-5

    Google Scholar 

  10. Cotta RM, Knupp DC, Naveira-Cotta CP (2016) Analytical heat and fluid flow in microchannels and microsystems. Springer, Mechanical Eng. Series. ISBN 978-3-319-23311-6

    Book  Google Scholar 

  11. Maitra T, Zhang S, Tiwari MK (2017) Thermal transport in micro and nanoscale systems. In: Kulacki FA et al (eds) Handbook of thermal science and engineering. Springer

    Google Scholar 

  12. Cotta RM, Orlande HRB (2003) Hybrid approaches in heat and mass transfer: A Brazilian experience with applications in national strategic projects. Heat Transf Eng (Invited Editorial) 24(4):1–5

    Article  Google Scholar 

  13. Cotta RM, Su J, Pontedeiro AC, Lisboa KM (2018) Computational-analytical integral transforms and lumped-differential formulations: benchmarks and applications in nuclear technology. Invited Plenary Lecture, international symposium on turbulence, heat and mass transfer, THMT-ICHMT. Begell House, Rio de Janeiro, 10th–13th July 2018

    Google Scholar 

  14. Aparecido JB, Cotta RM (1989) Improved one-dimensional fin solutions. Heat Transf Eng 11(1):49–59

    Article  Google Scholar 

  15. Cotta RM, Ozisik MN, Mennig J (1990) Coupled integral equation approach for phase-change problem in two-regions finite slab. J Franklin Inst 327(2):225–234

    Article  Google Scholar 

  16. Cotta RM, Mikhailov MD (1997) Heat conduction: lumped analysis, integral transforms, symbolic computation. Wiley Interscience, New York

    Google Scholar 

  17. Correa EJ, Cotta RM (1998) Enhanced lumped-differential formulations of diffusion problems. Appl Math Model. 22:137–152

    Article  Google Scholar 

  18. Cotta RM (1998) Chap. 10: Improved lumped-differential formulations in heat transfer (Invited chapter, volume 2). In: Sunden B, Faghri M (eds) Modelling of engineering heat transfer phenomena. Heat transfer series. Computational Mechanics Publication, UK, pp 293–325

    Google Scholar 

  19. Alves LSB, Sphaier LA, Cotta RM (2000) Error analysis of mixed lumped-differential formulations in diffusion problems. Hybrid Meth Eng 2(4):409–435

    Article  Google Scholar 

  20. Sphaier LA, Su J, Cotta RM (2017) Macroscopic heat conduction formulation. In: Kulacki FA et al (eds) Handbook of thermal science and engineering. Springer

    Google Scholar 

  21. Hermite MC (1878) Sur la Formule d’Interpolation de Lagrange. J Crelle 84

    Google Scholar 

  22. Hirata SC, Goyeau B, Gobin D, Carr M, Cotta RM (2007) Linear stability of natural convection in superposed fluid and porous layers: influence of the interfacial modelling. Int J Heat Mass Transf 50:1356–1367

    Article  Google Scholar 

  23. Hirata SC, Goyeau B, Gobin D, Chandesris M, Jamet D (2009) Stability of natural convection in superposed fluid and porous layers: equivalence of the one- and two-domain approaches. Int J Heat Mass Transf 52:533–536

    Article  Google Scholar 

  24. Knupp DC, Naveira-Cotta CP, Cotta RM (2012) Theoretical analysis of conjugated heat transfer with a single domain formulation and integral transforms. Int Comm Heat Mass Transf 39(3):355–362

    Article  Google Scholar 

  25. Knupp DC, Cotta RM, Naveira-Cotta CP (2015) Fluid flow and conjugated heat transfer in arbitrarily shaped channels via single domain formulation and integral transforms. Int J Heat Mass Transf 82:479–489

    Article  Google Scholar 

  26. Minkowycz WJ, Sparrow EM, Murthy JY (eds) (2006) Handbook of numerical heat transfer, 2nd edn. Chapter 16, Wiley, New York

    Google Scholar 

  27. Luikov AV (1968) Analytical heat diffusion theory. Academic Press, New York

    Google Scholar 

  28. Ozisik MN (1980) Heat conduction. Wiley, New York

    Google Scholar 

  29. Mikhailov MD, Ozisik MN (1993) Unified analysis and solution of heat and mass diffusion. Wiley, 1984; also, Dover Publications

    Google Scholar 

  30. Cotta RM (1986) Diffusion in media with prescribed moving boundaries: application to metals oxidation at high temperatures. In: Proceedings of the II Latin American congress of heat & mass transfer, V. 1. São Paulo, Brasil, pp 502–513

    Google Scholar 

  31. Cotta RM, Ozisik MN (1986) Laminar forced convection in ducts with periodic variation of inlet temperature. Int J Heat Mass Transf 29(10):1495–1501

    Article  Google Scholar 

  32. Cotta RM (1990) Hybrid numerical-analytical approach to nonlinear diffusion problems. Num Heat Transf Part B 127:217–226

    Article  Google Scholar 

  33. Cotta RM (1993) Integral transforms in computational heat and fluid flow. CRC Press, Boca Raton

    MATH  Google Scholar 

  34. Cotta RM (1994) Benchmark results in computational heat and fluid flow: -the integral transform method. Int J Heat Mass Transf (Invited Paper) 37:381–394

    Article  Google Scholar 

  35. Cotta RM (1998) The integral transform method in thermal & fluids sciences & engineering. Begell House, New York

    MATH  Google Scholar 

  36. Cotta RM, Mikhailov MD (2006) Hybrid methods and symbolic computations. In: Minkowycz WJ, Sparrow EM, Murthy JY (eds) Handbook of numerical heat transfer, 2nd ed. Chap. 16. Wiley, New York

    Google Scholar 

  37. Cotta RM, Knupp DC, Naveira-Cotta CP (2016) Analytical heat and fluid flow in microchannels and microsystems. Mechanical Eng. Series, Springer

    Book  Google Scholar 

  38. Cotta RM, Knupp DC, Quaresma JNN (2017) Analytical methods in heat transfer. In: Kulacki FA et al (eds) Handbook of Thermal Science and Engineering. Springer

    Google Scholar 

  39. Cotta RM, Naveira-Cotta CP, Knupp DC, Zotin JLZ, Pontes PC, Almeida AP (2018) Recent advances in computational-analytical integral transforms for convection-diffusion problems. Heat Mass Transf (Invited Paper) 54:2475–2496

    Article  Google Scholar 

  40. Wolfram S (2017) Wolfram mathematica, version 11. Wolfram Research Inc., Champaign

    Google Scholar 

  41. Cotta RM, Knupp DC, Naveira-Cotta CP, Sphaier LA, Quaresma JNN (2013) Unified integral transforms algorithm for solving multidimensional nonlinear convection-diffusion problems. Num Heat Transf Part A-Appl 63:1–27

    Google Scholar 

  42. Cotta RM, Knupp DC, Naveira-Cotta CP, Sphaier LA, Quaresma JNN (2014) The unified integral transforms (UNIT) algorithm with total and partial transformation. Comput Thermal Sci 6(6):507–524

    Article  Google Scholar 

  43. Ozisik MN, Orlande HRB (2000) Inverse heat transfer: fundamentals and applications. Taylor and Francis, New York

    Google Scholar 

  44. Orlande HRB, Fudym O, Maillet D, Cotta RM (2011) Thermal measurements and inverse techniques. CRC Press, Boca Raton

    Book  Google Scholar 

  45. Naveira-Cotta CP, Orlande HRB, Cotta RM (2010) Inverse analysis of forced convection in microchannels with slip flow via integral transforms and Bayesian inference. Int J Thermal Sci 49:879–888

    Article  Google Scholar 

  46. Naveira-Cotta CP, Orlande HRB, Cotta RM (2010) Integral transforms and Bayesian inference in the identification of variable thermal conductivity in two-phase dispersed systems. Numer Heat Transf Part B- Fundam 57:173–202

    Article  Google Scholar 

  47. Naveira-Cotta CP, Cotta RM, Orlande HRB (2011) Inverse analysis with integral transformed temperature fields for identification of thermophysical properties functions in heterogeneous media. Int J Heat Mass Transf 54(7-8):1506–1519

    Article  Google Scholar 

  48. Naveira-Cotta CP, Cotta RM, Orlande HRB (2011) Estimation of space variable thermophysical properties. In: Orlande HRB, Fudym O, Maillet D, Cotta RM (eds) Thermal measurements and inverse techniques, Chap. 20. CRC Press, Boca Raton, pp 675–707

    Google Scholar 

  49. Knupp DC, Naveira-Cotta CP, Ayres JVC, Orlande HRB, Cotta RM (2012) Space-variable thermophysical properties identification in nanocomposites via integral transforms, Bayesian inference and infrared thermography. Inverse Prob Sci Eng 20(5):609–637

    Article  MathSciNet  Google Scholar 

  50. Knupp DC, Naveira-Cotta CP, Ayres JVC, Cotta RM, Orlande HRB (2012) Theoretical-experimental analysis of heat transfer in nonhomogeneous solids via improved lumped formulation. Integral transforms and infrared thermography. Int J Thermal Sci 62:71–84

    Article  Google Scholar 

  51. Knupp DC, Naveira-Cotta CP, Fonseca HM, Orlande HRB, Cotta RM, Fudym O (2014). Thermal characterization of non-homogeneous media. In: Basu SK, Kumar N (eds) Modelling and simulation of diffusive processes. Springer Series: simulation foundations, methods and applications, Chapter 6, pp 119–139

    Google Scholar 

  52. Abreu LAS, Orlande HRB, Colaço MJ, Kaipio J, Kolehmainen V, Cotta RM (2018) Detection of contact failures with the Markov Chain Monte Carlo method by using integral transformed measurements. Int J Thermal Sci 132:486–497

    Article  Google Scholar 

  53. Hetsroni G, Mosyak A, Pogrebnyak E, Yarin LP (2005) Heat transfer in microchannels: comparison of experiments with theory and numerical results. Int J Heat Mass Transf 48:5580–5601

    Article  Google Scholar 

  54. Naveira-Cotta CP, Orlande HRB, Cotta RM, JS Nunes (2010) Integral transforms, Bayesian inference, and infrared thermography in the simultaneous identification of variable thermal conductivity and diffusivity in heterogeneous media. In: 14th international heat transfer conference. Paper no. IHTC14-22511, V. 3. Washington, pp 341–350

    Google Scholar 

  55. Knupp DC, Naveira-Cotta CP, Ayres JVC, Orlande HRB, Cotta RM (2010) Experimental-theoretical analysis in a transient heat conduction setup via infrared thermography and unified integral transforms. Int Rev Chem Eng IRECHE 2(6):736–747

    Google Scholar 

  56. Knupp DC, Naveira-Cotta CP, Orlande HRB, Cotta RM (2013) Experimental identification of thermophysical properties in heterogeneous materials with integral transformation of temperature measurements from infrared thermography. Exp Heat Transf 26:1–25

    Article  Google Scholar 

  57. Abreu LA, Orlande HRB, Kaipio J, Kolehmainen V, Cotta RM, Quaresma JNN (2014) Identification of contact failures in multi-layered composites with the Markov Chain Monte Carlo Method. ASME J Heat Transf 136(10):101302–101311

    Article  Google Scholar 

  58. Costa Junior JM, Naveira-Cotta CP, Fudym O (2014) Image processing of temperature fields from infrared thermography of micro-mixers with polymeric substrates. Thermal Eng (RETERM) 13(1):71–79

    Google Scholar 

  59. Knupp DC, Naveira-Cotta CP, Renfer A, Tiwari MK, Cotta RM, Poulikakos D (2015) Analysis of conjugated heat transfer in micro-heat exchangers via integral transforms and non-intrusive optical techniques. Int J Num Meth Heat Fluid Flow 25(6):1444–1462

    Article  Google Scholar 

  60. Renfer A, Tiwari MK, Brunschwiler T, Michel B, Poulikakos D (2011) Experimental investigation into vortex structure and pressure drop across microcavities in 3D integrated electronics. Exp Fluids 51:731–741

    Article  Google Scholar 

  61. Renfer A, Tiwari MK, Tiwari R, Alfieri F, Brunschwiler T, Michel B, Poulikakos D (2013) Microvortex-enhanced heat transfer in 3D-integrated liquid cooling of electronic chip stacks. Int J Heat Mass Transf 65:33–43

    Article  Google Scholar 

  62. Cagney N, Balabani S (2014) Streamwise vortex-induced vibrations of cylinders with one and two degrees-of-freedom. J Fluid Mech 758:702–727

    Article  Google Scholar 

  63. Ma S, Sherwood JM, Huck WTS, Balabani S (2014) On the flow topology inside droplets moving in rectangular microchannels. Lab Chip 14:3611–3620

    Article  Google Scholar 

  64. Sharma CS, Tiwari MK, Zimmermann S, Brunschwiler T, Schlottig G, Michel B, Poulikakos D (2015) Energy efficient hotspot-targeted embedded liquid cooling of electronics. Appl Energy 138:414–422

    Article  Google Scholar 

  65. Zhang S, Tiwari MK, Balabani S, Naveira-Cotta CP, Cotta RM (2017) Residence time control in micromixers based on vortex shedding. In: 9th world conference on experimental heat transfer, fluid mechanics and thermodynamics, Iguaçu Falls, Brazil, 12–15 June 2017

    Google Scholar 

  66. Costa Junior JM, Naveira-Cotta CP, Nunes JS, Tostado CP (2015) Design, fabrication and characterization of micro-reactor for biodiesel synthesis. Heat Pipe Sci Technol 6(3–4):135–153

    Google Scholar 

  67. Pontes PC, Chen K, Naveira-Cotta CP, Costa Junior JM, Tostado CP, Quaresma JNN (2016) Mass transfer simulation of biodiesel synthesis in microreactors. Comput Chem Eng 93:36–51

    Article  Google Scholar 

  68. Pontes PC, Naveira-Cotta CP (2016) Inverse problem analysis for identification of reaction kinetics constants in microreactors for biodiesel synthesis. J Phys: Conf Ser 745

    Google Scholar 

  69. Pontes PC, Naveira-Cotta CP, Macêdo EN, Quaresma JNN (2015) Integral transforms analysis of three-dimensional mass transfer in the transesterification process in micro-reactors. In: Proceedings of the international symposium on advances in computational heat transfer—ICHMT, Piscataway, USA

    Google Scholar 

  70. Pontes PC, Naveira-Cotta CP, Quaresma JNN (2017) Three-dimensional reaction-convection-diffusion analysis with temperature influence for biodiesel synthesis in micro-reactors. Int J Thermal Sci 118:104–122

    Article  Google Scholar 

  71. Costa Junior JM, Naveira-Cotta CP (2019) Estimation of kinetic constants in micro-reactors for biodiesel synthesis: Bayesian inference with reduced mass transfer model. Chem Eng Res Des 141:550–565

    Google Scholar 

  72. Costa Junior JM (2017) Theoretical-experimental analysis of microreactors for biodiesel synthesis with rejected heat recovery. D.Sc. thesis, Mechanical Eng. Dept., PEM/COPPE, Federal University of Rio de Janeiro, UFRJ

    Google Scholar 

  73. de Souza IF, Guerrieri D, Naveira-Cotta CP, Tiwari MK (2018) Experimental-theoretical analysis of a micro heat exchanger for waste heat recovery from HCPV Systems. ASME J Thermal Sci Eng Appl. https://doi.org/10.1115/1.4041439. Published on line 3rd Sept 2018

    Article  Google Scholar 

  74. Schwarz S, Borovinskaya ES, Reschetilowski W (2013) Base catalyzed ethanolysis of soybean oil in micro-reactors: experiments and kinetic modeling. Chem Eng Sci 104:610–618

    Article  Google Scholar 

  75. Al-Dhubabian AA (2005) Production of biodiesel from soybean oil in a micro scale reactor. M.Sc. thesis, Oregon State University, Corvallis, OR, USA

    Google Scholar 

  76. Billo RE, Oliver CR, Charoenwat R, Dennis BH, Wilson PA, Priest JW, Beardsley H (2015) A cellular manufacturing process for a full-scale biodiesel microreactor. J Manufact Syst 1:409–416

    Article  Google Scholar 

  77. Santana HS, Tortola DS, Reis EM, Silva JL Jr, Taranto OP (2016) Transesterification reaction of sunflower oil and ethanol for biodiesel synthesis in microchannel reactor: experimental and simulation studies. Chem Eng J 302:752–762

    Article  Google Scholar 

  78. Tiwari A, Rajesh VM, Yadav S (2018) Biodiesel production in micro-reactors: a review. Energy Sustain Dev 43:143–161

    Article  Google Scholar 

  79. Kaipio J, Somersalo E (2004) Statistical and computational inverse problems. Appl Math Sci 160

    Google Scholar 

  80. Gamerman D, Lopes HF (2006) Markov Chain Monte Carlo: stochastic simulation for Bayesian inference, 2nd edn. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

  81. Orlande HRB (2012) Inverse problems in heat transfer: new trends on solution methodologies and applications. ASME J Heat Transf 134:031011

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support by CAPES/INMETRO, CNPq, and FAPERJ, from Brazil, and the UK Newton Fund. RMC is also grateful to the Leverhulme Trust for the Visiting Professorship (VP1-2017-028) and CNPC acknowledges the postdoctoral fellowship provided by CAPES/Brazil. RMC, CPNC, and PCP acknowledge the hospitality of the Department of Mechanical Engineering, University College London (UCL), UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Cotta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Costa, J.M., Pontes, P.C., Naveira-Cotta, C.P., Tiwari, M.K., Balabani, S., Cotta, R.M. (2020). Hybrid Approach in Microscale Transport Phenomena: Application to Biodiesel Synthesis in Micro-reactors. In: Gupta, A., De, A., Aggarwal, S., Kushari, A., Runchal, A. (eds) Innovations in Sustainable Energy and Cleaner Environment. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-9012-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9012-8_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9011-1

  • Online ISBN: 978-981-13-9012-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics