Skip to main content

Modelling Atmospheric Nitrogen Deposition in China

  • Chapter
  • First Online:

Abstract

Atmospheric chemistry models simulate the physical and chemical transformation of airborne nitrogen (N) compounds and their sinks through wet and dry deposition. This chapter reviews modelling approaches for simulating atmospheric N deposition and their recent applications for estimating N deposition to China. Parameterizations of wet deposition include scavenging via both convective updrafts and large-scale precipitation. Dry deposition is often simulated as the product of number density and dry deposition velocity based on the resistance-in-series model using local land properties and meteorological conditions. Recent modelling studies have reported the annual total N deposition to China in the range of 7.9–20.1 Tg N year−1. Reduced N (NHx) accounts for 60–80% of the total, reflecting high NH3 emissions from agricultural activities in China. Dry deposition contributes 39–62% of total deposition depending on the specific model. More direct dry deposition measurements are needed to better evaluate model results. There are also considerable uncertainties in modelling N deposition resulting from the complexity of deposition mechanisms, the uncertainty of input parameters and the properties of N components. Future work to improve the deposition mechanisms and N emission estimates is needed to obtain better modelling of atmospheric N deposition to China.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen DJ, Pickering KE (2002) Evaluation of lightning flash rate parameterizations for use in a global chemical transport model. J Geophys Res-Atmos 107:3851–3876

    Article  Google Scholar 

  • Baklanov A, Sorensen JH (2001) Parameterisation of radionuclide deposition in atmospheric long-range transport modelling. Phys Chem Earth Pt B 26:787–799

    Article  Google Scholar 

  • Barfield BJ, Gerber JF (1979) Modification of the aerial environment of plants. American Society of Agricultural Engineers, St. Joseph, Mich

    Google Scholar 

  • Baldocchi DD, Hicks BB, Camara P (1987) A canopy stomatal resistance model for gaseous deposition to vegetated surfaces. Atmos Environ 21:91–101

    Article  CAS  Google Scholar 

  • Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Progress in photosynthesis research. Springer, pp 221–224

    Google Scholar 

  • Beer R (2006) TES on the aura mission: scientific objectives, measurements, and analysis overview. IEEE Geosci Remote Sens Lett 44:1102–1105

    Article  Google Scholar 

  • Byun D, Schere KL (2006) Review of the governing equations, computational algorithms, and other components of the models-3 Community Multiscale Air Quality (CMAQ) modelling system. Appl Mech Rev 59:51–77

    Article  Google Scholar 

  • Canfield DE, Glazer AN, Falkowski PG (2010) The evolution and future of Earth’s nitrogen cycle. Science 330:192–196. https://doi.org/10.1126/science.1186120

    Article  CAS  Google Scholar 

  • Chamberlain AC (2004) Radioactive aerosols, vol 3. Cambridge University Press, Cambridge

    Google Scholar 

  • Charusombat U, Niyogi D, Kumar A et al (2010) Evaluating a new deposition velocity module in the Noah land-surface model. Bound-Layer Meteorol 137:271–290

    Article  Google Scholar 

  • Chen W, Guenther A, Wang X et al (2018) Regional to global biogenic isoprene emission responses to changes in vegetation from 2000 to 2015. J Geophys Res-Atmos 123:3757–3771

    Article  CAS  Google Scholar 

  • Cionco RM (1972) Intensity of turbulence within canopies with simple and complex roughness elements. Bound-Layer Meteorol 2:453–465. https://doi.org/10.1007/bf00821548

    Article  Google Scholar 

  • Cornell SE, Jickells TD, Cape JN et al (2003) Organic nitrogen deposition on land and coastal environments: a review of methods and data. Atmos Environ 37:2173–2191

    Article  CAS  Google Scholar 

  • Croft B, Lohmann U, Martin R et al (2010) Influences of in-cloud aerosol scavenging parameterizations on aerosol concentrations and wet deposition in ECHAM5-HAM. Atmos Chem Phys 10:1511–1543

    Article  CAS  Google Scholar 

  • Dentener F, Drevet J, Lamarque JF et al (2006) Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Glob Biogeochem Cycles 20:GB4003

    Article  CAS  Google Scholar 

  • Dong W, Xing J, Wang SX (2010) Temporal and spatial distribution of anthropogenic ammonia emissions in China: 1994-2006. Environ Sci 31:1457–1463

    Google Scholar 

  • Droppo JG (2006) Improved formulations for air-surface exchanges related to National Security Needs: dry deposition models. Pacific Northwest National Laboratory (PNNL), Richland

    Book  Google Scholar 

  • Du E, Liu X (2014) High rates of wet nitrogen deposition in China: a synthesis. In: Nitrogen deposition, critical loads and biodiversity. Springer, Dordrecht, pp 49–56

    Chapter  Google Scholar 

  • Erisman JW, Wyers GP (1993) Continuous measurements of surface exchange of SO2 and NH3: implications for their possible interaction in the deposition process. Atmos Environ 27:1937–1949

    Article  Google Scholar 

  • Erisman J, Van Elzakker B, Mennen M et al (1994) The Elspeetsche Veld experiment on surface exchange of trace gases: summary of results. Atmos Environ 28:487–496

    Article  CAS  Google Scholar 

  • Erisman JW, Draaijers G, Duyzer J et al (1997) Particle deposition to forests-summary of results and application. Atmos Environ 31:321–332

    Article  CAS  Google Scholar 

  • Fang G, Wu Y, Chang C et al (1999) Modeling dry deposition of total particle mass in trafficked and rural sites of Central Taiwan. Environ Int 25:625–633

    Article  Google Scholar 

  • Galloway JN, Cowling EB (2002) Reactive nitrogen and the world: 200 years of change. Ambio 31:64–71

    Article  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG et al (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226

    Article  CAS  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW et al (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  CAS  Google Scholar 

  • Gruber N, Galloway JN (2008) An earth-system perspective of the global nitrogen cycle. Nature 451:293–296

    Article  CAS  Google Scholar 

  • Gu F, Zhang Y, Huang M et al (2015) Nitrogen deposition and its effect on carbon storage in Chinese forests during 1981–2010. Atmos Environ 123:171–179

    Article  CAS  Google Scholar 

  • Hanna SR, Briggs GA, Hosker RP Jr (1982) Handbook on atmospheric diffusion. National Oceanic and Atmospheric Administration. Atmospheric Turbulence and Diffusion Lab, Oak Ridge

    Book  Google Scholar 

  • Hertel O, Skjoth CA, Lofstrom P et al (2006) Modelling nitrogen deposition on a local scale – a review of the current state of the art. Environ Chem 3:317–337

    Article  CAS  Google Scholar 

  • Huang Z, Wang S, Zheng J et al (2015) Modeling inorganic nitrogen deposition in Guangdong province. China Atmos Environ 109:147–160

    Article  CAS  Google Scholar 

  • Hudman RC, Moore NE, Mebust AK et al (2012) Steps towards a mechanistic model of global soil nitric oxide emissions: implementation and space based-constraints. Atmos Chem Phys 12:7779–7795

    Article  CAS  Google Scholar 

  • Jacob D (1999) Introduction to atmospheric chemistry. Princeton University Press

    Google Scholar 

  • Jarvis P (1976) The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos Trans R Soc Lond B 273:593–610

    Article  CAS  Google Scholar 

  • Jia Y, Yu G, He N et al (2014) Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity. Sci Rep 4:3763

    Article  CAS  Google Scholar 

  • Kim E, Kalman D, Larson T (2000) Dry deposition of large, airborne particles onto a surrogate surface. Atmos Environ 34:2387–2397

    Article  CAS  Google Scholar 

  • Kim T-W, Lee K, Najjar RG et al (2011) Increasing N abundance in the Northwestern Pacific Ocean due to atmospheric nitrogen deposition. Science 334:505–509

    Article  CAS  Google Scholar 

  • Kurokawa J, Ohara T, Morikawa T et al (2013) Emissions of air pollutants and greenhouse gases over Asian regions during 2000-2008: regional emission inventory in ASia (REAS) version 2. Atmos Chem Phys 13:11019–11058

    Article  CAS  Google Scholar 

  • Lamarque JF, Dentener F, McConnell J et al (2013) Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation of historical and projected future changes. Atmos Chem Phys 13:7997–8018

    Article  CAS  Google Scholar 

  • Liang J, Horowitz LW, Jacob DJ et al (1998) Seasonal budgets of reactive nitrogen species and ozone over the United States, and export fluxes to the global atmosphere. J Geophys Res-Atmos 103:13435–13450

    Article  CAS  Google Scholar 

  • Lin B-L, Sakoda A, Shibasaki R et al (2000) Modelling a global biogeochemical nitrogen cycle in terrestrial ecosystems. Ecol Model 135:89–110

    Article  CAS  Google Scholar 

  • Liu X, Duan L, Mo J et al (2011) Nitrogen deposition and its ecological impact in China: an overview. Environ Pollut 159:2251–2264

    Article  CAS  Google Scholar 

  • Liu X, Zhang Y, Han W et al (2013) Enhanced nitrogen deposition over China. Nature 494:459–462

    Article  CAS  Google Scholar 

  • Liu X, Xu W, Duan L et al (2017) Atmospheric nitrogen emission, deposition and air quality impacts in China: an overview. Curr Pollut Rep 3:65–77

    Article  CAS  Google Scholar 

  • Lu C, Tian H (2014) Half-century nitrogen deposition increase across China: a gridded time-series data set for regional environmental assessments. Atmos Environ 97:68–74

    Article  CAS  Google Scholar 

  • Meyers TP, Finkelstein P, Clarke J et al (1998) A multilayer model for inferring dry deposition using standard meteorological measurements. J Geophys Res-Atmos 103:22645–22661

    Article  CAS  Google Scholar 

  • Müller H, Pröhl G (1993) ECOSYS-87: a dynamic model for assessing radiological consequences of nuclear accidents. Health Phys 64:232–252

    Article  Google Scholar 

  • Norman J (1979) Modelling the complete crop canopy. In: Modification of the aerial environment of plants. Am Soc Agr Eng Monograph 2:249–277

    Google Scholar 

  • Petroff A, Mailliat A, Amielh M et al (2008) Aerosol dry deposition on vegetative canopies. Part I: Review of present knowledge. Atmos Environ 42:3625–3653

    Article  CAS  Google Scholar 

  • Pleim J, Ran LM (2011) Surface flux modeling for air quality applications. Atmosfera 2:271–302

    CAS  Google Scholar 

  • Price C, Rind D (1992) A simple lightning parameterization for calculating global lightning distributions. J Geophys Res-Atmos 97:9919–9933

    Article  Google Scholar 

  • Ruijgrok W, Tieben H, Eisinga P (1997) The dry deposition of particles to a forest canopy: a comparison of model and experimental results. Atmos Environ 31:399–415

    Article  Google Scholar 

  • Sanderson MG, Dentener FJ, Fiore AM et al (2008) A multi-model study of the hemispheric transport and deposition of oxidised nitrogen. Geophys Res Lett 35:L17815

    Article  CAS  Google Scholar 

  • Sehmel GA (1980) Particle and gas dry deposition: a review. Atmos Environ 14:983–1011

    Article  Google Scholar 

  • Slinn W (1982) Predictions for particle deposition to vegetative canopies. Atmos Environ 16:1785–1794

    Article  Google Scholar 

  • Soloviev AV, Schlüssel P (1994) Parameterization of the cool skin of the ocean and of the air-ocean gas transfer on the basis of modeling surface renewal. J Phys Oceanogr 24:1339–1346

    Article  Google Scholar 

  • van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Kasibhatla PS, Arellano AF (2006) Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos Chem Phys 6:3423–3441

    Article  Google Scholar 

  • Vet R, Artz RS, Carou S et al (2014) A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmos Environ 93:3–100

    Article  CAS  Google Scholar 

  • Wang X, Wu Z, Shao M et al (2013) Atmospheric nitrogen deposition to forest and estuary environments in the Pearl River Delta region, southern China. Tellus Ser B Chem Phys Meteorol 65:20480

    Article  CAS  Google Scholar 

  • Wesely ML (1989) Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmos Environ 23:1293–1304

    Article  CAS  Google Scholar 

  • Wesely M, Hicks B (2000) A review of the current status of knowledge on dry deposition. Atmos Environ 34:2261–2282

    Article  CAS  Google Scholar 

  • Wiedinmyer C, Yokelson RJ, Gullett BK (2014) Global emissions of trace gases, particulate matter, and hazardous air pollutants from open burning of domestic waste. Environ Sci Technol 48:9523–9530

    Article  CAS  Google Scholar 

  • Wu ZY, Wang XM, Turnipseed AA et al (2012) Evaluation and improvements of two community models in simulating dry deposition velocities for peroxyacetyl nitrate (PAN) over a coniferous forest. J Geophys Res-Atmos 117:D04310

    Google Scholar 

  • Wu Z, Zhang L, Wang X et al (2015) A modified micrometeorological gradient method for estimating O3 dry depositions over a forest canopy. Atmos Chem Phys 15:7487–7496

    Article  CAS  Google Scholar 

  • Xu W, Luo X, Pan Y et al (2015) Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China. Atmos Chem Phys 15:12345–12360

    Article  CAS  Google Scholar 

  • Xu P, Liao Y, Lin Y et al (2016) High-resolution inventory of ammonia emissions from agricultural fertilizer in China from 1978 to 2008. Atmos Chem Phys 16:1207–1218

    Article  CAS  Google Scholar 

  • Xu W, Zhao Y, Liu X et al (2018) Atmospheric nitrogen deposition in the Yangtze River basin: spatial pattern and source attribution. Environ Pollut 232:546–555

    Article  CAS  Google Scholar 

  • Yienger JJ, Levy H (1995) Empirical model of global soil-biogenic NOx emissions. J Geophys Res-Atmos 100:11447–11464

    Article  CAS  Google Scholar 

  • Zhang LM, Brook JR, Vet R (2002) On ozone dry deposition – with emphasis on non-stomatal uptake and wet canopies. Atmos Environ 36:4787–4799

    Article  CAS  Google Scholar 

  • Zhang L, Brook JR, Vet R (2003) A revised parameterization for gaseous dry deposition in air-quality models. Atmos Chem Phys 3:2067–2082

    Article  CAS  Google Scholar 

  • Zhang Y et al (2008) Evidence for organic N deposition and its anthropogenic sources in China. Atmos Enviro 42:1035–1041

    Article  CAS  Google Scholar 

  • Zhang Y, Yu Q, Ma W et al (2010) Atmospheric deposition of inorganic nitrogen to the eastern China seas and its implications to marine biogeochemistry. J Geophys Res-Atmos 115:D00K10

    Article  Google Scholar 

  • Zhang Y, Dore AJ, Liu X et al (2011) Simulation of nitrogen deposition in the North China plain by the FRAME model. Biogeosciences 8:3319–3329

    Article  CAS  Google Scholar 

  • Zhang L, Jacob DJ, Knipping EM et al (2012) Nitrogen deposition to the United States: distribution, sources, and processes. Atmos Chem Phys 12:4539–4554

    Article  CAS  Google Scholar 

  • Zhang Q, Chang M, Zhou S et al (2017a) Evaluate dry deposition velocity of the nitrogen oxides using Noah-MP physics ensemble simulations for the Dinghushan Forest, Southern China. Asia-Pac J Atmos Sci 53:519–536

    Article  Google Scholar 

  • Zhang X, Wu Y, Liu X et al (2017b) Ammonia emissions may be substantially underestimated in China. Environ Sci Technol 51:12089–12096

    Article  CAS  Google Scholar 

  • Zhang L, Chen Y, Zhao Y et al (2018) Agricultural ammonia emissions in China: reconciling bottom-up and top-down estimates. Atmos Chem Phys 18:339–355

    Article  CAS  Google Scholar 

  • Zhao Y, Duan L, Xing J et al (2009) Soil acidification in China: is controlling SO2 emissions enough? Environ Sci Technol 43:8021–8026

    Article  CAS  Google Scholar 

  • Zhao Y, Zhang L, Pan Y et al (2015) Atmospheric nitrogen deposition to the northwestern Pacific: seasonal variation and source attribution. Atmos Chem Phys 15:10905–10924

    Article  CAS  Google Scholar 

  • Zhao Y, Zhang L, Chen Y et al (2017a) Atmospheric nitrogen deposition to China: a model analysis on nitrogen budget and critical load exceedance. Atmos Environ 153:32–40

    Article  CAS  Google Scholar 

  • Zhao Y, Zhang L, Tai APK et al (2017b) Responses of surface ozone air quality to anthropogenic nitrogen deposition in the northern hemisphere. Atmos Chem Phys 17:9781–9796

    Article  CAS  Google Scholar 

  • Zheng X, Fu C, Xu X et al (2002) The Asian nitrogen cycle case study. Ambio 31:79–87

    Article  Google Scholar 

  • Zheng D, Wang X, Xie S et al (2014) Simulation of atmospheric nitrogen deposition in China in 2010. China Environ Sci 34:1089–1097

    CAS  Google Scholar 

  • Zhu J, He N, Wang Q et al (2015) The composition, spatial patterns, and influencing factors of atmospheric wet nitrogen deposition in Chinese terrestrial ecosystems. Sci Total Environ 511:777–785

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by the National Key Research and Development Program of China (2017YFC0210100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Zhang or Xuemei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, L., Wang, X., Zhao, Y., Zhang, Q., Chang, M., Wang, Q. (2020). Modelling Atmospheric Nitrogen Deposition in China. In: Liu, X., Du, E. (eds) Atmospheric Reactive Nitrogen in China. Springer, Singapore. https://doi.org/10.1007/978-981-13-8514-8_4

Download citation

Publish with us

Policies and ethics