Skip to main content

Development of Future Bioformulations for Sustainable Agriculture

  • Chapter
  • First Online:
Microbiome in Plant Health and Disease

Abstract

Intensive use of chemical fertilizers and pesticides for increased food production has resulted in many health hazards to humans and animals. The incessant application of these hazardous chemicals is also degrading agroecosystems. The beneficial role of soil microbes in sustainable agriculture has provided insights for decreasing the reliance on pesticides and use of chemicals for food production. In recent years, development of inoculants for sustainable agriculture has provided an alternative. However, application of these bioformulations has many hindrances and has been met with social reluctance, especially in developing countries. Because of the high specificity of bioformulations to crop and soil types, this cost-effective and green strategy faces many hurdles in comparison with chemical fertilizers and pesticides. Moreover, the viability and effectiveness of inoculants relies on the carrier material and preservation conditions. For their success in sustainable agriculture, careful selection of microbe types and extensive field evaluations are needed. This chapter critically reviews the different types and different aspects of bioformulation development for sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-el-Seoud II, Abdel-Megeed A (2012) Impact of rock materials and biofertilizations on P and K availability for maize (Zea maize) under calcareous soil conditions. Saudi J Biol Sci 19:55–63

    Article  CAS  PubMed  Google Scholar 

  • Aeron A, Dubey RC, Maheshwari DK, Pandey P, Bajpai VK, Kang SC (2011) Multifarious activity of bioformulated Pseudomonas fluorescens PS1 and biocontrol of Sclerotinia sclerotiorum in Indian rapeseed (Brassica campestris L.). Eur J Plant Pathol 131:81–93

    Article  Google Scholar 

  • Agrawal A, Burns MA (1996) Application of membrane-based preferential transport to whole broth processing. Biotechnol Bioeng 55:581–591

    Article  Google Scholar 

  • Agrawal P, Pandey SC, Manjunatha RAH (2014) Development of liquid formulation for the dual purpose of crop protection and production. J Environ Res Develop 8(3):378–383

    Google Scholar 

  • AgroNews (2014) Biofertilizers market—global industry analysis, size, share, growth, trends and forecast, 2013–2019. http://report.agropages.com/ReportDetail-1292.htm. Accessed 12 Nov 2018

  • Ahmed HFS, El-Araby MMI (2012) Evaluation of the influence of nitrogen fixing, phosphate solubilizing and potash mobilizing biofertilizers on growth, yield, and fatty acid constituents of oil in peanut and sunflower. Afr J Biotechnol 11:10079–10088

    CAS  Google Scholar 

  • Ansari MA, Butt TM (2012) Evaluation of entomopathogenic fungi and a nematode against the soil-dwelling stages of the crane fly Tipula paludosa. Pest Manag Sci 68:1337–1344

    Article  CAS  PubMed  Google Scholar 

  • Ardakani SS, Heydari A, Khorasani N, Arjmandi R (2010) Development of new bioformulations of Pseudomonas fluorescens and evaluation of these products against damping-off cotton seedlings. J Plant Pathol 92(1):83–88

    Google Scholar 

  • Arora NK (2015) Plant microbe symbiosis: applied facets. Springer, New Delhi, p 383

    Google Scholar 

  • Arora NK, Kumar V, Maheshwari DK (2001) Constraints, development and future of the inoculants with special reference to rhizobial inoculants. In: Maheshwari DK, Dubey RC (eds) Innovative approaches in microbiology. Singh and Singh, Dehradun, pp 241–245

    Google Scholar 

  • Arora NK, Khare E, Maheshwari DK (2010) Plant growth promoting rhizobacteria: constraints in bioformulation, commercialization and future strategies. In: Maheshwari DK (ed) Bacteria and plant health. Springer, Berlin, pp 97–116

    Chapter  Google Scholar 

  • Ash GJ (2010) The science, art and business of successful bioherbicides. Biol Control 52:230–240

    Article  Google Scholar 

  • Auld B (2002) Fungi as biocontrol agents: progress, problems and potential. Plant Pathol 51:518–518

    Article  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth promoting bacteria use in agriculture. Biotechnol Adv 6:729–770

    Article  Google Scholar 

  • Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33

    Article  CAS  Google Scholar 

  • Beneduzi A, Ambrosini A, Pasagila LMP (2012) Plant growth promoting rhizobacteria (PGPR): their potential as antagonistic and biocontrol agents. Genet Mol Biol 35:1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonaterra A, Camps J, Montesinos E (2005) Osmotically induced trehalose and glycine betaine accumulation improves tolerance to desiccation, survival and efficacy of the postharvest biocontrol agent Pantoea agglomerans EPS125. FEMS Microbiol Lett 250:1–8

    Article  CAS  PubMed  Google Scholar 

  • Brar SK, Verma M, Tyagi RD, Valero JR (2006) Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides. Process Biochem 41:323–342

    Article  CAS  Google Scholar 

  • Bravo A, Likitvivatanavong S, Gill SS, Sobero NM (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol 41:423–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burges HD, Jones KA (1998) Formulation of microbial biopesticides: beneficial microorganisms, nematodes and seed treatments. Kluwer Academic, Dordrecht, p 411

    Book  Google Scholar 

  • CAB International Centre (2010) The 2010 world wide biopesticides market summary. CAB International Centre, Wallingford

    Google Scholar 

  • Callaghan MO, Gerard FM (2005) Establishment of Serratia entomophila in soil from a granular formulation. N Z Plant Prot 58:122–125

    Google Scholar 

  • Cerda H, Maurizio GP (2004) Genetic engineering with Bacillus thuringiensis and conventional approaches for insect resistance in crops. Crit Rev Plant Sci 23:317–323

    Article  Google Scholar 

  • Chakraborty U, Chakraborty BN, Chakraborty AP, Sunar K, Dey PL (2013) Plant growth promoting rhizobacteria mediated improvement of health status of tea plants. Indian J Biotechnol 12(1):20–31

    CAS  Google Scholar 

  • Chakravarty G, Kalita MC (2011) Management of bacterial wilt of brinjal by Pseudomonas fluorescens based bioformulation. ARPN J Agric Biol Sci 6(3):1–11

    Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lal WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Cheng H, Li L, Hua J, Yuan H, Cheng S (2015) A preliminary preparation of endophytic bacteria CE3 wettable powder for biological control of postharvest diseases. Not Bot Hortic Agrobot 43:159–164

    Article  Google Scholar 

  • Cheze-Lange H, Beunard D, Dhulster P, Guillochon D, Caze A-M, Morcellet M, Saude N, Junter GA (2002) Production of microbial alginate in a membrane bioreactor. Enzym Microb Technol 30:656–661

    Article  CAS  Google Scholar 

  • Chuaboon W, Prathuangwong S (2007) Biological control of cauliflower soft rot using bacterial antagonist and its risk assessment. J Thai Phytopathol 21:63–48

    Google Scholar 

  • Chumthong A, Kanjanamaneesathian M, Pengnoo A, Wiwattanapatapee R (2008) Water-soluble granules containing Bacillus megaterium for biological control of rice sheath blight: formulation, bacterial viability and efficacy testing. World J Microbiol Biotechnol 24:2499–2507

    Article  Google Scholar 

  • Cohen E, Joseph T (2009) Photostabilization of Beauveria bassiana conidia using anionic dyes. Appl Clay Sci 42:569–574

    Article  CAS  Google Scholar 

  • Cong PT, Dung TD, Hien TM (2009) Inoculant plant growth–promoting microorganisms enhance utilisation of urea–N and grain yield of paddy rice in southern Vietnam. Eur J Soil Biol 45:52–61

    Article  CAS  Google Scholar 

  • Copping LG (2009) The manual of biocontrol agents: a world compendium. British Crop Protection Council, Alton, p 851

    Google Scholar 

  • De Faria MR, Wraight SP (2007) Mycoinsecticides and mycoararicides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256

    Article  CAS  Google Scholar 

  • Devi PSV, Ravinder T, Jaidev C (2005) Cost-effective production of Bacillus thuringiensis by solid-state fermentation. J Invertebr Pathol 88:163–168

    Article  CAS  PubMed  Google Scholar 

  • Ehlers RU (2006) Use of biotechnology in biological plant protection. Pflanzenschutz Schr Dtsch Phytomed Ges 8:17–31

    CAS  Google Scholar 

  • Ehlers RU, Shapiro-Ilan DI (2005) Mass production. In: Grewal PS, Ehlers RU, Shapiro-Ilan DI (eds) Nematode biocontrol agents. CAB International Centre, Wallingford, pp 65–78

    Chapter  Google Scholar 

  • El-Hassan SA, Gowen SR (2006) Formulation and delivery of the bacterial antagonist Bacillus subtilis for management of lentil vascular wilt caused by Fusarium oxysporum f. sp. lentis. J Phytopathol 154:148–155

    Article  Google Scholar 

  • Evans J, Wallace C, Dobrowolski N (1993) Interaction of soil type and temperature on the survival of Rhizobium leguminosarum bv. viciae. Soil Biol Biochem 25:1153–1160

    Article  Google Scholar 

  • Fageria NK, Baligar VC, Edwards DG (1990) Soil–plant nutrient relationships at low pH stress. In: Baligar VC, Duncan RR (eds) Crops as enhancers of nutrient use. Academic, San Diego, pp 475–507

    Chapter  Google Scholar 

  • Falk SP, Gadoury DM, Cortesi P, Pearson RC, Seem RC (1995) Partial control of grape powdery mildew by the mycoparasite Ampelomyces quisqualis. Plant Dis 79:483–490

    Article  Google Scholar 

  • Farrar JRR, Ridgway RL (1995) Enhancement of activity of Bacillus thuringiensis Berliner against four lepidopterous insect pests by nutrient based phagostimulants. J Entomol Sci 30:29–42

    Article  Google Scholar 

  • Feng MG, Pu XY, Ying SH, Wang YG (2004) Field trials of an oil-based emulsifiable formulation of Beauveria bassiana conidia and low application rates of imidacloprid for control of false-eye leaf hopper Empoasca vitis on tea in southern China. Crop Prot 23:489–496

    Article  CAS  Google Scholar 

  • Franche C, Lindstrom K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59

    Article  CAS  Google Scholar 

  • Garnett T, Conn V, Kaiser BN (2009) Root based approaches to improving nitrogen use efficiency in plants. Plant Cell Environ 32:1272–1283

    Article  CAS  PubMed  Google Scholar 

  • Gasic S, Tanovic B (2013) Biopesticide formulations, possibility of application and future trends. Pestic Phytomed 28:97–102

    Article  CAS  Google Scholar 

  • Gielesen B, van den Berg M (2013) Transformation of filamentous fungi in microtiter plate. In: Gupta VK, Tuohy MG, Ayyachamy M, Turner KM, O’Donovan A (eds) Laboratory protocols in fungal biology: current methods in fungal biology. Springer, New York, pp 343–347. http://sci-hub.tw/10.1007/978-1-4614-2356-0_30

    Google Scholar 

  • Gothwal R, Nigam V, Mohan M, Sasmal D, Ghosh P (2009) Screening of nitrogen fixers from rhizospheric bacterial isolates associated with important desert plants. Appl Ecol Environ Res 6:101–109

    Article  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microbial Biochem Technol 7:96–102

    CAS  Google Scholar 

  • Harris J, Dent D (2000) Priorities in biopesticide research and development in developing countries. CAB International Centre, Wallingford

    Book  Google Scholar 

  • Heydari A, Gharedaghli A (2007) Integrated pest management on cotton in Asia and North Africa. In: INCANA, Tehran

    Google Scholar 

  • Hu X, Chen J, Guo J (2006) Two phosphate and potassium solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World J Microbiol Biotechnol 22:983–990

    Article  CAS  Google Scholar 

  • Hynes RK, Boyetchko SM (2006) Research initiatives in the art and science of biopesticide formulations. Soil Biol Biochem 38:845–849

    Article  CAS  Google Scholar 

  • Jambhulkar PP, Sharma P (2014) Development of bioformulation and delivery system of Pseudomonas fluorescens against bacterial leaf blight of rice Xanthomonas oryzae pv. oryzae. J Environ Biol 35:843–849

    CAS  PubMed  Google Scholar 

  • Jaronski ST (2014) Mass production of entomopathogenic fungi: state of the art. In: Morales-Ramos JA, Rojas MG, Shapiro-Ilan DI (eds) Mass production of beneficial organisms: invertebrates and entomopathogens. Elsevier, London, pp 357–414

    Chapter  Google Scholar 

  • Jeyarajan R, Nakkeeran S (2000) Exploitation of microorganisms and viruses as biocontrol agents for crop disease management. In: RK Upadhyay et al. (eds) Biocontrol potential and their exploitation in sustainable agriculture. Kluwer Academic/Plenum, New York, pp 95–116

    Chapter  Google Scholar 

  • John RP, Tyagi RD, Brar SK, Surampalli RY, Prevost D (2011) Bio-encapsulation of microbial cells for targeted agricultural delivery. Crit Rev Biotechnol 31:211–226

    Article  CAS  PubMed  Google Scholar 

  • Kabi MC (1997) Impact of biofertilizer on rural development. In: Proceedings of National Conference on Impact of Biotechnology and Modern Horticulture in Rural Development, Jadavpur

    Google Scholar 

  • Kadouri D, Jurkevitch E, Okon Y, Castro-Sowinski S (2005) Ecological and agricultural significance of bacterial polyhydroxyalkanoates. Crit Rev Microbiol 31:55–67

    Article  CAS  PubMed  Google Scholar 

  • Kalawate A (2014) Microbial viral insecticides. In: Sahayaraj K (ed) Basic and applied aspects of biopesticides. Springer, New Delhi, pp 47–68

    Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture—a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2009) Role of phosphate solubilizing microorganisms in sustainable agriculture. In: Lictfouse E et al (eds) Sustainable agriculture. Springer, Dordrecht, pp 551–570

    Chapter  Google Scholar 

  • Kidaj D, Wielbo J, Skorupska A (2012) Nod factors stimulate seed germination and promote growth and nodulation of pea and vetch under competitive conditions. Microbiol Res 167:144–150

    Article  CAS  PubMed  Google Scholar 

  • Knowles A (2008) Recent developments of safer formulations of agrochemicals. Environmentalist 28:35–44

    Article  Google Scholar 

  • Kosanke JW, Osburn RM, Shuppe GI, Smith RS (1992) Slow rehydration improves the recovery of dried bacterial populations. Can J Microbiol 38:520–525

    Article  CAS  PubMed  Google Scholar 

  • Kraiser T, Gras DE, Gutierrez AG, Gonzalez B, Gutierrez RA (2011) A holistic view of nitrogen acquisition in plants. J Exp Bot 62:1455–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonard GC, Julius JM (2000) Review biopesticides: a review of their action, applications and efficacy. Pest Manag Sci 56:651–676

    Article  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lupwayi NZ, Clayton GW, Rice WA (2006) Rhizobial inoculants for legume crops. J Crop Improv 15:289–321

    Article  CAS  Google Scholar 

  • Mbarga JB, Begoude BAD, Ambang Z, Meboma M, Kuate J, Schiffers B, Hoopen GMT (2014) A new oil-based formulation of Trichoderma asperellum for the biological control of cacao black pod disease caused by Phytophthora megakarya. Biol Control 77:15–22

    Article  Google Scholar 

  • McCoy CW (1990) Entomogenous fungi as microbial pesticides. In: Baker RR, Dunn PE (eds) New direction in biological control: alternatives for suppressing agricultural pests and diseases. Alan R. Liss, New York, pp 139–159

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  CAS  PubMed  Google Scholar 

  • Mejri D, Gamalero E, Souissi T (2013) Formulation development of the deleterious rhizobacterium Pseudomonas trivialis X33d for biocontrol of brome (Bromus diandrus) in durum wheat. J Appl Microbiol 114:219–228

    Article  CAS  PubMed  Google Scholar 

  • Messele B, Pant LM (2012) Effects of inoculation of Sinorhizobium ciceri and phosphate solubilizing bacteria on nodulation, yield and nitrogen and phosphorus uptake of chickpea (Cicer arietinum L.) in Shoa Robit area. J Biofertil Biopestic 3:1–6

    Article  Google Scholar 

  • Meyer JM (2000) Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol 174:135–142

    Article  CAS  PubMed  Google Scholar 

  • MicroMarket Monitor (2015) North America biofertilizer market by application (cereals & grains, fruits & vegetables, pulses & oilseeds), by type (nitrogen fixing biofertilizers, phosphate solubilizing biofertilizers, potash mobilizing biofertilizers), by source, by geography—analysis and forecast to 2019. http://www.micromarketmonitor.com/market/north-america-bio-fertilizer-5250154124.html. Accessed

  • Morel MA, Castro-Sowinski S (2013) The complex molecular signaling network in microbe–plant interaction. In: Arora NK (ed) Plant microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 169–199

    Chapter  Google Scholar 

  • Morel MA, Brana V, Castro-Sowinski S (2012) Legume crops, importance and use of bacterial inoculation to increase the production. In: Goyal A (ed) Crop plant. InTech, Rijeka, pp 217–240

    Google Scholar 

  • Morel MA, Cagide C, Minteguiaga MA, Dardanelli MS, Castro-Sowinski S (2015) The pattern of secreted molecules during the co-inoculation of alfalfa plants with Sinorhizobium meliloti and Delftia sp. strain JD2: an interaction that improves plant yield. Mol Plant-Microbe Interact 28:134–142

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Sarmiento N, Moreno-Rodriguez LF, Uribe D (2007) Biofertilizantes para la agricultura en Colombia. In: Izaguirre-Mayoral ML, Labandera C, Sanjuan J (eds) Biofertilizantes en Iberoamerica: vision tecnica, cientifica y empresarial. Denad Internacional, Montevideo, pp 38–45

    Google Scholar 

  • Nguyen Q, Qi YM, Wu Y, Chan LC, Nielsen LK, Reid S (2011) In vitro production of Helico verpa baculovirus biopesticides—automated selection of insect cell clones for manufacturing and systems biology studies. J Virol Methods 175:197–205

    Article  CAS  PubMed  Google Scholar 

  • Nordstierna L, Abdalla AA, Nordin M, Nyden M (2010) Comparison of release behavior from microcapsules and microspheres. Prog Org Coat 69:49–51

    Article  CAS  Google Scholar 

  • Oldroyd GE (2013) Speak, friend, and enter: signaling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263

    Article  CAS  PubMed  Google Scholar 

  • Paul E, Fages J, Blanc P, Goma G, Pareilleux A (1993) Survival of alginate-entrapped cells of Azospirillum lipoferum during dehydration and storage in relation to water properties. Appl Microbiol Biotechnol 40:34–39

    Article  CAS  Google Scholar 

  • Peoples MB, Brockwell J, Herridge DF, Rochester IJ, Alves BJ, Urquiaga S, Boddey RM, Dakora FD, Bhattarai S, Maskey SL, Sampet C (2009) The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48(1–3):1–7

    Article  CAS  Google Scholar 

  • PRWeb (2014) Europe bio fertilizer market is expected to reach $4,582.2 million in 2017 new report by MicroMarket Monitor. https://www.prweb.com/releases/bio-fertilizer/market/prweb12040386.htm. Accessed 18 Sept 2019

  • Rao GVR, Kumar CS, Sireesha K, Kumar PL (2015) Role of nucleopolyhedroviruses (NPVs) in the management of lepidopteran pests in Asia. In: Sree KS, Varma A (eds) Biocontrol of lepidopteran pests: use of soil microbes and their metabolites. Springer, Cham, 11–52

    Google Scholar 

  • Rehm G, Schmitt M (2002) Potassium for crop production. Regents of the University of Minnesota, Saint Paul. https://extension.umn.edu/phosphorus-and-potassium/potassium-crop-production Accessed 14 June 2019

  • Reid S, Chan L, Van Oers M (2014) Production of entomopathogenic viruses. In: Morales-Ramos JA, Rojas MG, Shapiro-Ilan DI (eds) Mass production of beneficial organisms. Elsevier, Amsterdam, pp 437–482

    Chapter  Google Scholar 

  • Rosas-Garcia NM (2009) Biopesticide production from Bacillus thuringiensis: an environmentally friendly alternative. Recent Pat Biotechnol 3:28–36

    Article  CAS  PubMed  Google Scholar 

  • Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P (2015) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 23:3984

    Article  CAS  Google Scholar 

  • Schisler DA, Slininger PJ, Behle RW, Jackson MA (2004) Formulation of Bacillus sp. for biological control of plant diseases. Phytopathology 94:1267–1271

    Article  CAS  PubMed  Google Scholar 

  • Seneviratne G, Kulasooriya SA (2013) Reinstating soil microbial diversity in agroecosystems: the need of the hour for sustainability and health. Agric Ecosyst Environ 164:181–182

    Article  Google Scholar 

  • Shah-Smith DA, Burns RG (1997) Shelf-life of a biocontrol Pseudomonas putida applied to sugarbeet seeds using commercial coating. Biocontrol Sci Tech 7:65–74

    Article  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2:587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sheng XF, Lin YH (2006) Solubilization of potassium-bearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52(1):66–72

    Article  CAS  PubMed  Google Scholar 

  • Singh KN, Merchant K (2012) The agrochemical industry. In: Kent JA (ed) Handbook of industrial chemistry and biotechnology. Springer, New York, pp 643–699

    Chapter  Google Scholar 

  • Stamford NP, Lima RA, Lira MA Jr, Santos CERS (2008) Effectiveness of phosphate and potash rocks with Acidithio bacillus on sugarcane yield and their effects on soil chemical attributes. World J Microbiol Biotechnol 24:2061–2066

    Article  CAS  Google Scholar 

  • Sun X (2015) History and current status of development and use of viral insecticides in China. Viruses 7:306–319

    Article  PubMed  PubMed Central  Google Scholar 

  • Syers JK (1998) Soil and plant potassium in agriculture. International Fertiliser Society, Newcastle upon Tyne

    Google Scholar 

  • Tadros T (2013) Suspension concentrates. In: Tadros T (ed) Encyclopedia of colloid and interface science. Springer, Berlin/Heidelberg, 1334–1334

    Chapter  Google Scholar 

  • Tajini F, Trabelsi M, Drevon JJ (2012) Combined inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases phosphorus use efficiency for symbiotic nitrogen fixation in common bean (Phaseolus vulgaris L.). Saudi J Biol Sci 19:157–163

    Article  CAS  PubMed  Google Scholar 

  • Tewari S, Arora NK (2014) Multifunctional exopolysaccharides from Pseudomonas aeruginosa pf23 involved in plant growth stimulation, biocontrol and stress amelioration in sunflower under saline conditions. Curr Microbiol 69:484–494

    Article  CAS  PubMed  Google Scholar 

  • Thakore Y (2006) The biopesticide market for global agricultural use. Ind Biotechnol 2:194–208

    Article  Google Scholar 

  • Thavasi R, Marchant R, Banat IM (2015) Biosurfactant applications in agriculture. In: Naim KN, Vardar-Sukan F (eds) Biosurfactants production and utilization-processes, technologies, and economics. Taylor & Francis, Boca Raton, pp 313–327

    Google Scholar 

  • Trabelsi D, Mhamdi R (2013) Microbial inoculants and their impact on soil microbial communities: a review. Bio Med Res Int 86:32–40

    Google Scholar 

  • Trivedi P, Pandey A, Palni LMS (2005) Carrier-based preparations of plant growth promoting bacterial inoculants suitable for use in cooler regions. World J Microbiol Biotechnol 21:941–945

    Article  Google Scholar 

  • Tzeng YM, Tsun HY, Chang YN (1999) Recovery of thuringiensin with cetylpyridinium chloride using micellar-enhanced ultrafiltration process. Biotechnol Prog 15:580–586

    Article  CAS  PubMed  Google Scholar 

  • Van Beek N, Davis DC (2007) Baculovirus insecticide production in insect larvae. Methods Mol Biol 388:367–378

    Article  PubMed  Google Scholar 

  • Vassilev SV, Vassileva CG (2006) A new approach for the classification of coal fly ashes based on their origin, composition, properties, and behavior. Fuel 86:1490–1512

    Article  CAS  Google Scholar 

  • Verma M, Brar S, Tyagi R, Surampalli R, Valero J (2007) Industrial wastewaters and dewatered sludge: rich nutrient source for production and formulation of biocontrol agent, Trichoderma viride. World J Microbiol Biotechnol 23:1695–1703

    Article  CAS  PubMed  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma–plant–pathogen interactions. Soil Biol Biochem 40:1–10

    Article  CAS  Google Scholar 

  • Viswanathan R, Samiyappan R (2008) Bio-formulation of fluorescent Pseudomonas spp. induces systemic resistance against red rot disease and enhances commercial sugar yield in sugarcane. Arch Phytopathol Plant Protect 41(5):377–388

    Article  CAS  Google Scholar 

  • Weller DM (2007) Pseudomonas biocontrol agents of soil borne pathogens: looking back over 30 years. Phytopathology 97:250–256

    Article  PubMed  Google Scholar 

  • Woo SL, Ruocco M, Vinale F, Nigro M, Marra R, Lombardi N, Pascale A, Lanzuise S, Manganiello G, Lorito M (2014) Trichoderma-based products and their widespread use in agriculture. Open Mycol J 8:71–126

    Article  Google Scholar 

  • Young J, Choi J, Gringorten L, Belanger L, Morel L, Bourque D, Masson L, Groleau D, Mıguez CB (2008) Production of an insecticidal crystal protein from Bacillus thuringiensis by the methylotroph Methylobacterium extorquens. Appl Environ Microbiol 74:5178–5182

    Article  CAS  Google Scholar 

  • Young SD, Townsend RJ, Swaminathan J, Callaghan MO (2010) Serratia entomophila–coated seed to improve ryegrass establishment in the presence of grass grubs New Zealand. Plant Prot 63:229–234

    CAS  Google Scholar 

  • Zayadan BK, Matorin DN, Baimakhanova GB, Bolathan K, Oraz GD, Sadanov AK (2014) Promising microbial consortia for producing biofertilizers for rice fields. Microbiology 83:391–397

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qasim Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ijaz, M., Ali, Q., Ashraf, S., Kamran, M., Rehman, A. (2019). Development of Future Bioformulations for Sustainable Agriculture. In: Kumar, V., Prasad, R., Kumar, M., Choudhary, D. (eds) Microbiome in Plant Health and Disease. Springer, Singapore. https://doi.org/10.1007/978-981-13-8495-0_19

Download citation

Publish with us

Policies and ethics