Skip to main content

New Paradigm in Degradation of Lignocellulosic Biomass and Discovery of Novel Microbial Strains

  • Chapter
  • First Online:
Book cover Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications

Abstract

Microbial degradation of lignocellulosic biomass (LCB) is of great human interest as it results in the production of numerous value-added products. 2G ethanol is an important lignocellulosics-based product that offers a long-term biotechnological solution to the depleting crude oil reserves without competing with food resources. The efficient degradation of LCB requires synergistic action of an array of microbial enzymes that include modular and non-modular glycosyl hydrolases (endoglucanase, exoglucanase, β-glucosidase, endoxylanase, β-xylosidase, α-arabinofuranosidase, α-glucuronidase, α-galactosidases and β-mannosidases), carbohydrate esterases (CE proteins) and other auxiliary enzymes (LPMOs, CDH and laccases). The genomics and proteomics studies have suggested a variety of culturable and non-culturable lignocellulolytic microorganisms inhabiting diverse ecological niches such as decaying plant materials, soil, compost piles, rumens, forest waste piles, wood processing plants, methanogenic sludge and surface of seashore. Among the rich microbial diversity, fungi are known for their ability to produce copious amounts of these lignocellulolytic enzymes. The wild-type fungal strains (with low specific activities) are subjected to several strain improvement strategies employing cyclic mutagenesis, recombinant technologies and other molecular techniques targeting regulatory elements to enhance their enzyme titres, specific activities and catalytic/hydrolytic efficiencies. The cellulase-/hemicellulase-rich preparations produced by growing developed strains on inexpensive agro-residues as carbon sources (under SSF and/or SmF) find potential applications in biorefineries, paper and pulp industry, animal feed, food and beverages industry and textile and detergent industry, making global business of USD 800 million per year.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adav SS, Ng CS, Arulmani M, Sze SK (2010) Quantitative iTRAQ secretome analysis of cellulolytic Thermobifida fusca. J Proteome Res 9:3016–3024

    Article  CAS  PubMed  Google Scholar 

  • Adney WS, Baker JO, Decker SR, Chou YC, Himmel ME, Ding SY (2008) Superactive cellulase formulation using cellobiohydrolase-1 from Penicillium funiculosum (No. 7,449,550). GFO (Golden Field Office, Golden, CO (United States)

    Google Scholar 

  • Adsul MG, Ghule JE, Singh R, Shaikh H, Bastawde KB, Gokhale DV, Varma AJ (2004) Polysaccharides from bagasse: applications in cellulase and xylanase production. Carbohydr Polym 57:67–72

    Article  CAS  Google Scholar 

  • Adsul MG, Bastawde KB, Varma AJ, Gokhale DV (2007) Strain improvement of Penicillium janthinellum NCIM 1171 for increased cellulase production. Bioresour Technol 98:1467–1473

    Article  CAS  PubMed  Google Scholar 

  • Agger JW, Isaksen T, Várnai A, Vidal-Melgosa S, Willats WG, Ludwig R, Horn SJ, Eijsink VG, Westereng B (2014) Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proc Natl Acad Sci U S A 111:6287–6292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguilar CN, Augur C, Favela-Torres E, Viniegra-González G (2001) Production of tannase by Aspergillus niger Aa-20 in submerged and solid-state fermentation: influence of glucose and tannic acid. J Ind Microbiol Biotechnol 26:296–302

    Article  CAS  PubMed  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros MJ, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  CAS  PubMed  Google Scholar 

  • Amore A, Pepe O, Ventorino V, Aliberti A, Faraco V (2013) Cellulolytic Bacillus strains from natural habitats-a review. Chimica Oggi/Chem Today 31:49–52

    CAS  Google Scholar 

  • Antonella A, Simona G, Vincenza F (2007) Trichoderma reesei homologue of Aspergillus nidualns CreB. Fungal Genetics Newslett 54:98

    Google Scholar 

  • Arfi Y, Shamshoum M, Rogachev I, Peleg Y, Bayer EA (2014) Integration of bacterial lytic polysaccharide monooxygenases into designer cellulosomes promotes enhanced cellulose degradation. Proc Natl Acad Sci U S A 111:9109–9114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora DS, Sharma RK (2010) Ligninolytic fungal laccases and their biotechnological applications. Appl Biochem Biotechnol 160:1760–1788

    Article  CAS  Google Scholar 

  • Bai A, Zhao X, Jin Y, Yang G, Feng Y (2013) A novel thermophilic β-glucosidase from Caldicellulosiruptor bescii: characterization and its synergistic catalysis with other cellulases. J Mol Catal B: Enzym 85:248–256

    Article  CAS  Google Scholar 

  • Bajpai P (1997) Microbial xylanolytic enzyme system: properties and applications. Adv Appl Microbiol 43:141–194

    Article  CAS  PubMed  Google Scholar 

  • Bayer EA, Smith SP, Noach I, Alber O, Adams JJ, Lamed R, Shimon LJW, Frolow F (2009) Can we crystallize a cellulosome. Biotechnology of lignocellulose degradation and biomass utilization. Springer, Netherlands, pp 183–205

    Google Scholar 

  • Beckham GT, Bomble YJ, Matthews JF, Taylor CB, Resch MG, Yarbrough JM, Decker SR, Bu L, Zhao X, McCabe C, Wohlert J (2010) The O-glycosylated linker from the Trichoderma reesei Family 7 cellulase is a flexible, disordered protein. Biophys J 99:3773–3781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beeson WT, Phillips CM, Cate JH, Marletta MA (2011) Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J Am Chem Soc 134:890–892

    Article  CAS  PubMed  Google Scholar 

  • Bensah EC, Mensah M (2013) Chemical pretreatment methods for the production of cellulosic ethanol: technologies and innovations. Int J Chem Eng 2013

    Google Scholar 

  • Bergquist PL, Gibbs MD, Morris DD, Te’o VJ, Saul DJ, Morgan HW (1999) Molecular diversity of thermophilic cellulolytic and hemicellulolytic bacteria. FEMS Microbiol Ecol 28:99–110

    Article  CAS  Google Scholar 

  • Bhalla A, Bischoff KM, Uppugundla N, Balan V, Sani RK (2014a) Novel thermostable endo-xylanase cloned and expressed from bacterium Geobacillus sp. WSUCF1. Bioresour Technol 165:314–318

    Article  CAS  PubMed  Google Scholar 

  • Bhalla A, Bischoff KM, Sani RK (2014b) Highly thermostable GH39 β-xylosidase from a Geobacillus sp. strain WSUCF1. BMC Biotechnol 14:963

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhatia Y, Mishra S, Bisaria VS (2002) Microbial β-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol 22:375–407

    Article  CAS  PubMed  Google Scholar 

  • Bibi Z, Ansari A, Zohra RR, Aman A, Qader SAU (2014) Production of xylan degrading endo-1, 4-β-xylanase from thermophilic Geobacillus stearothermophilus KIBGE-IB29. J Radiat Res Appl Sci 7:478–485

    Article  Google Scholar 

  • Blouzard JC, Coutinho PM, Fierobe HP, Henrissat B, Lignon S, Tardif C, de Philip P (2010) Modulation of cellulosome composition in Clostridium cellulolyticum: adaptation to the polysaccharide environment revealed by proteomic and carbohydrate-active enzyme analyses. Proteomics 10:541–554

    Article  CAS  PubMed  Google Scholar 

  • Blumer-Schuette SE, Brown SD, Sander KB, Bayer EA, Kataeva I, Zurawski JV, Conway JM, Adams MW, Kelly RM (2014) Thermophilic lignocellulose deconstruction. FEMS Microbiol Rev 38:393–448

    Article  CAS  PubMed  Google Scholar 

  • Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourbonnais R, Paice MG (1990) Oxidation of non-phenolic substrates: an expanded role for laccase in lignin biodegradation. FEBS Lett 267:99–102

    Article  CAS  PubMed  Google Scholar 

  • Bourne Y, Henrissat B (2001) Glycoside hydrolases and glycosyltransferases: families and functional modules. Curr Opin Struct Biol 11:593–600

    Article  CAS  PubMed  Google Scholar 

  • Bouws H, Wattenberg A, Zorn H (2008) Fungal secretomes—nature’s toolbox for white biotechnology. Appl Microbiol Biotechnol 80:381

    Article  CAS  PubMed  Google Scholar 

  • Brown NA, de Gouvea PF, Krohn NG, Savoldi M, Goldman GH (2013) Functional characterisation of the non-essential protein kinases and phosphatases regulating Aspergillus nidulans hydrolytic enzyme production. Biotechnol Biofuels 6:91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunzelle JS, Jordan DB, McCaslin DR, Olczak A, Wawrzak Z (2008) Structure of the two-subsite β-D-xylosidase from Selenomonas ruminantium in complex with 1, 3-bis [tris (hydroxymethyl) methylamino] propane. Arch Biochem Biophys 474:157–166

    Article  CAS  PubMed  Google Scholar 

  • Bu L, Nimlos MR, Shirts MR, Ståhlberg J, Himmel ME, Crowley MF, Beckham GT (2012) Product binding varies dramatically between processive and nonprocessive cellulase enzymes. J Biol Chem 287:24807–24813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bukhtojarov FE, Ustinov BB, Salanovich TN, Antonov AI, Gusakov AV, Okunev ON, Sinitsyn AP (2004) Cellulase complex of the fungus Chrysosporium lucknowense: isolation and characterization of endoglucanases and cellobiohydrolases. Biochemistry (Mosc) 69:542–551

    Article  CAS  Google Scholar 

  • BURLACU A, CORNEA CP, ISRAEL-ROMING F (2016) Microbial xylanase: a review. Sci Bull Ser F Biotechnol 20:335–342

    Google Scholar 

  • Camassola M, Dillon AJP (2007) Production of cellulases and hemicellulases by Penicillium echinulatum grown on pretreated sugar cane bagasse and wheat bran in solid-state fermentation. J Appl Microbiol 103:2196–2204

    Article  CAS  PubMed  Google Scholar 

  • Canam T, Town JR, Tsang A, McAllister TA, Dumonceaux TJ (2011) Biological pretreatment with a cellobiose dehydrogenase-deficient strain of Trametes versicolor enhances the biofuel potential of canola straw. Bioresour Technol 102:10020–10027

    Article  CAS  PubMed  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2008) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cara C, Ruiz E, Oliva JM, Sáez F, Castro E (2008) Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification. Bioresour Technol 99:1869–1876

    Article  CAS  PubMed  Google Scholar 

  • Castillo ZP, Villalonga-Santana M, Tamayo-Cortés J, Rivera-Muñoz G, Solís-Pereira S (2012) Purification and characterization of laccase from Trametes hirsuta Bm-2 and its contribution to dye and effluent decolorization. Afr J Biotechnol 11:3603–3611

    Google Scholar 

  • Chadha BS, Rubinder K, Saini HS (2005) Constitutive α-amylase producing mutant and recombinant haploid strains of thermophilic fungus Thermomyces lanuginosus. Folia Malacol 50:133–140

    CAS  Google Scholar 

  • Chandel AK, Singh OV, Chandrasekhar G, Rao LV, Narasu ML (2010) Key drivers influencing the commercialization of ethanol-based biorefineries. J Commer Biotechnol 16:239–257

    Article  Google Scholar 

  • Chekushina AV, Dotsenko GS, Sinitsyn AP (2013) Comparing the efficiency of plant material bioconversion processes using biocatalysts based on Trichoderma and Penicillium verruculosum enzyme preparations. Catal Ind 5:98–104

    Article  Google Scholar 

  • Chen H (2014) Brief introduction to the biotechnology of lignocellulose. In: Biotechnology of lignocellulose. Springer, Dordrecht, pp 1–24

    Chapter  Google Scholar 

  • Chen M, Qin Y, Liu Z, Liu K, Wang F, Qu Y (2010) Isolation and characterization of a β-glucosidase from Penicillium decumbens and improving hydrolysis of corncob residue by using it as cellulase supplementation. Enzyme Microb Technol 46:444–449

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Luo Q, Zhou W, Xie Z, Cai YJ, Liao XR, Guan ZB (2016) Improving the catalytic efficiency of Bacillus pumilus CotA-laccase by site-directed mutagenesis. Appl Microbiol Biotechnol 8:1–10

    Google Scholar 

  • Chenchik A, Diachenko L, Moqadam F, Tarabykin V, Lukyanov S, Siebert PD (1996) Full-length cDNA cloning and determination of mRNA 5′ and 3′ ends by amplification of adaptor-ligated cDNA. Biotechniques 21:526–535

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Song X, Qin Y, Qu Y (2009) Genome shuffling improves production of cellulase by Penicillium decumbens JU-A10. J Appl Microbiol 107:1837–1846

    Article  CAS  PubMed  Google Scholar 

  • Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14:438–443

    Article  CAS  PubMed  Google Scholar 

  • Chundawat SP, Lipton MS, Purvine SO, Uppugundla N, Gao D, Balan V, Dale BE (2011) Proteomics-based compositional analysis of complex cellulase–hemicellulase mixtures. J Proteome Res 10:4365–4372

    Article  CAS  PubMed  Google Scholar 

  • Chylenski P, Petrović DM, Müller G, Dahlström M, Bengtsson O, Lersch M, Siika-aho M, Horn SJ, Eijsink VG (2017) Enzymatic degradation of sulfite-pulped softwoods and the role of LPMOs. Biotechnol Biofuels 10:177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen R, Suzuki MR, Hammel KE (2005) Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 71:2412–2417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dave BR, Sudhir AP, Subramanian RB (2015) Purification and properties of an endoglucanase from Thermoascus aurantiacus. Biotechnol Rep 6:85–90

    Article  Google Scholar 

  • Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3:853–859

    Article  CAS  PubMed  Google Scholar 

  • Davies GJ, Wilson KS, Henrissat B (1997) Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem J 321:557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Silva R, Lago ES, Merheb CW, Macchione MM, Park YK, Gomes E (2005) Production of xylanase and CMCase on solid state fermentation in different residues by Thermoascus aurantiacus miehe. Braz J Microbiol 36:235–241

    Google Scholar 

  • De Wet BJ, Matthew MK, Storbeck KH, Van Zyl WH, Prior BA (2008) Characterization of a family 54 α-L-arabinofuranosidase from Aureobasidium pullulans. Appl Microbiol Biotechnol 77:975–983

    Article  CAS  PubMed  Google Scholar 

  • Decker CH, Visser J, Schreier P (2000) β-glucosidases from five black Aspergillus species: study of their physico-chemical and biocatalytic properties. J Agric Food Chem 48:4929–4936

    Article  CAS  PubMed  Google Scholar 

  • Dillon AJ, Zorgi C, Camassola M, Henriques JAP (2006) Use of 2-deoxyglucose in liquid media for the selection of mutant strains of Penicillium echinulatum producing increased cellulase and β-glucosidase activities. Appl Microbiol Biotechnol 70:740

    Article  CAS  PubMed  Google Scholar 

  • Dimarogona M, Topakas E, Olsson L, Christakopoulos P (2012) Lignin boosts the cellulase performance of a GH-61 enzyme from Sporotrichum thermophile. Bioresour Technol 110:480–487

    Article  CAS  PubMed  Google Scholar 

  • Do Vale LH, Gómez-Mendoza DP, Kim MS, Pandey A, Ricart CA, Edivaldo Filho XF, Sousa MV (2012) Secretome analysis of the fungus Trichoderma harzianum grown on cellulose. Proteomics 12:2716–2728

    Article  CAS  PubMed  Google Scholar 

  • Dodd D, Cann IK (2009) Enzymatic deconstruction of xylan for biofuel production. GCB Bioenergy 1:2–17

    Article  CAS  PubMed  Google Scholar 

  • Doi RH, Kosugi A (2004) Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol 2:541

    Article  CAS  PubMed  Google Scholar 

  • dos Reis L, Fontana RC, da Silva Delabona P, da Silva Lima DJ, Camassola M, da Cruz Pradella JG, Dillon AJP (2013) Increased production of cellulases and xylanases by Penicillium echinulatum S1M29 in batch and fed-batch culture. Bioresour Technol 146:597–603

    Article  CAS  PubMed  Google Scholar 

  • Dumonceaux T, Bartholomew K, Valeanu L, Charles T, Archibald F (2001) Cellobiose dehydrogenase is essential for wood invasion and nonessential for kraft pulp delignification by Trametes versicolor. Enzyme Microb Technol 29:478–489

    Article  CAS  Google Scholar 

  • Esteghlalian AR, Srivastava V, Gilkes N, Gregg DJ, Saddler JN (2001) An overview of factors influencing the enzymatic hydrolysis of lignocellulosic feedstocks. Am Chem Soc 769:100–111

    Google Scholar 

  • Evans BR, Gilman AK, Cordray K, Woodward J (2000) Mechanism of substrate hydrolysis by a thermophilic endoglucanase from Thermotoga maritima. Biotechnol Lett 22:735–740

    Article  CAS  Google Scholar 

  • Ezeilo UR, Zakaria II, Huyop F, Wahab RA (2017) Enzymatic breakdown of lignocellulosic biomass: the role of glycosyl hydrolases and lytic polysaccharide monooxygenases. Biotechnol Biotechnol Equip 31:1–16

    Article  CAS  Google Scholar 

  • Fan G, Yang S, Yan Q, Guo Y, Li Y, Jiang Z (2014) Characterization of a highly thermostable glycoside hydrolase family 10 xylanase from Malbranchea cinnamomea. Int J Biol Macromol 70:482–489

    Article  CAS  PubMed  Google Scholar 

  • Fang X, Yano S, Inoue H, Sawayama S (2009) Strain improvement of Acremonium cellulolyticus for cellulase production by mutation. J Biosci Bioeng 107:256–261

    Article  CAS  PubMed  Google Scholar 

  • Faure D (2002) The family-3 glycoside hydrolases: from housekeeping functions to host-microbe interactions. Appl Environ Microbiol 68:1485–1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fendri I, Tardif C, Fierobe HP, Lignon S, Valette O, Perret S (2009) The cellulosomes from Clostridium cellulolyticum. FEBS J 276:3076–3086

    Article  CAS  PubMed  Google Scholar 

  • Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci USA 108:E1195–E1203

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferri S, Sode K (2010) Functional expression of Phanerochaete chrysosporium cellobiose dehydrogenase flavin domain in Escherichia coli. Biotechnol Lett 32:855–859

    Article  CAS  PubMed  Google Scholar 

  • Fierobe HP, Mingardon F, Mechaly A, Bélaïch A, Rincon MT, Pagès S, Lamed R, Tardif C, Bélaïch JP, Bayer EA (2005) Action of designer cellulosomes on homogeneous versus complex substrates controlled incorporation of three distinct enzymes into a defined trifunctional scaffoldin. World J Biol Chem 280:16325–16334

    Article  CAS  Google Scholar 

  • Fontes CM, Gilbert HJ (2010) Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annu Rev Biochem 79:655–681

    Article  CAS  PubMed  Google Scholar 

  • Fritz M, Ravanal MC, Braet C (2008) A family 51 α-L-arabinofuranosidase from Penicillium purpurogenum: purification, properties and amino acid sequence. Mycol Res 112:933–942

    Article  CAS  PubMed  Google Scholar 

  • Frommhagen M, Koetsier MJ, Westphal AH, Visser J, Hinz SW, Vincken JP, Berkel WJ, Kabel MA, Gruppen H (2016) Lytic polysaccharide monooxygenases from Myceliophthora thermophila C1 differ in substrate preference and reducing agent specificity. Biotechnol Biofuels 9:186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii T, Fang X, Inoue H, Murakami K, Sawayama S (2009) Enzymatic hydrolyzing performance of Acremonium cellulolyticus and Trichoderma reesei against three lignocellulosic materials. Biotechnol Biofuels 2:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii T, Inoue H, Ishikawa K (2013) Enhancing cellulase and hemicellulase production by genetic modification of the carbon catabolite repressor gene, creA, in Acremonium cellulolyticus. AMB Express 3:73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. In: Biofuels. Springer, Berlin/Heidelberg, pp 41–65

    Chapter  Google Scholar 

  • Gautam SP, Bundela PS, Pandey AK, Awasthi MK, Sarsaiya S (2010) Optimization of the medium for the production of cellulase by the Trichoderma viride using submerged fermentation. Int J Environ Sci Technol 1:656

    CAS  Google Scholar 

  • Geysens S, Pakula T, Uusitalo J, Dewerte I, Penttilä M, Contreras R (2005) Cloning and characterization of the glucosidase II alpha subunit gene of Trichoderma reesei: a frameshift mutation results in the aberrant glycosylation profile of the hypercellulolytic strain Rut-C30. Appl Environ Microbiol 71:2910–2924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert HJ, Stålbrand H, Brumer H (2008) How the walls come crumbling down: recent structural biochemistry of plant polysaccharide degradation. Curr Opin Plant Biol 11:338–348

    Article  CAS  PubMed  Google Scholar 

  • Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800

    Article  CAS  PubMed  Google Scholar 

  • Gokhale DV, Puntambekar US, Deobagkar DN (1993) Protoplast fusion: a tool for intergeneric gene transfer in bacteria. Biotechnol Adv 11:199–217

    Article  CAS  PubMed  Google Scholar 

  • Gong G, Zheng Z, Liu H, Wang L, Diao J, Wang P, Zhao G (2014) Purification and characterization of a beta-glucosidase from Aspergillus niger and its application in the hydrolysis of geniposide to genipin. J Microbiol Biotechnol 24:788–794

    Article  CAS  PubMed  Google Scholar 

  • Gong W, Zhang H, Liu S, Zhang L, Gao P, Chen G, Wang L (2015) Comparative secretome analysis of Aspergillus niger, Trichoderma reesei, and Penicillium oxalicum during solid-state fermentation. Appl Biochem Biotechnol 177:1252–1271

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Vogel A, Eyzaguirre J, Oleas G, Callegari E, Navarrete M (2011) Proteomic analysis in non-denaturing condition of the secretome reveals the presence of multienzyme complexes in Penicillium purpurogenum. Appl Microbiol Biotechnol 89:145–155

    Article  CAS  PubMed  Google Scholar 

  • Guais O, Borderies G, Pichereaux C, Maestracci M, Neugnot V, Rossignol M, François JM (2008) Proteomics analysis of “Rovabio™ Excel”, a secreted protein cocktail from the filamentous fungus Penicillium funiculosum grown under industrial process fermentation. J Ind Microbiol Biotechnol 35:1659–1668

    Article  CAS  PubMed  Google Scholar 

  • Guerfali M, Gargouri A, Belghith H (2008) Talaromyces thermophilus β-D-xylosidase: purification, characterization and xylobiose synthesis. Appl Biochem Biotechnol 150:267–279

    Article  CAS  PubMed  Google Scholar 

  • Guerfali M, Gargouri A, Belghith H (2011) Catalytic properties of Talaromyces thermophilus α-l-arabinofuranosidase and its synergistic action with immobilized endo-β-1, 4-xylanase. J Mol Catal B: Enzym 68:192–199

    Article  CAS  Google Scholar 

  • Gusakov AV (2011) Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol 29:419–425

    Article  CAS  PubMed  Google Scholar 

  • Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G (2006) Bio-ethanol–the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556

    Article  CAS  PubMed  Google Scholar 

  • Hamberg Y, Ruimy-Israeli V, Dassa B, Barak Y, Lamed R, Cameron K, Fontes CM, Bayer EA, Fried DB (2014) Elaborate cellulosome architecture of Acetivibrio cellulolyticus revealed by selective screening of cohesin–dockerin interactions. Peer J 2:636

    Article  Google Scholar 

  • Hameed A, Shahina M, Lai WA, Lin SY, Young LS, Liu YC, Hsu YH, Young CC (2015) Oricola cellulosilytica gen. nov., sp. nov., a cellulose-degrading bacterium of the family Phyllobacteriaceae isolated from surface seashore water, and emended descriptions of Mesorhizobium loti and Phyllobacterium myrsinacearum. Antonie Van Leeuwenhoek 107:759–771

    Article  CAS  PubMed  Google Scholar 

  • Hansen GH, Lübeck M, Frisvad JC, Lübeck PS, Andersen B (2015) Production of cellulolytic enzymes from ascomycetes: comparison of solid state and submerged fermentation. Process Biochem 50:1327–1341

    Article  CAS  Google Scholar 

  • Harreither W, Sygmund C, Augustin M, Narciso M, Rabinovich ML, Gorton L, Haltrich D, Ludwig R (2011) Catalytic properties and classification of cellobiose dehydrogenases from ascomycetes. Appl Environ Microbiol 77:1804–1815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey AJ, Hrmova M, De Gori R, Varghese JN, Fincher GB (2000) Comparative modeling of the three-dimensional structures of family 3 glycoside hydrolases. Proteins: Struct Funct Bioinf 41:257–269

    Article  CAS  Google Scholar 

  • Hasper AA, Dekkers E, van Mil M, van de Vondervoort PJ, de Graaff LH (2002) EglC, a new endoglucanase from Aspergillus niger with major activity towards xyloglucan. Appl Environ Microbiol 68:1556–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes DJ (2009) An examination of biorefining processes, catalysts and challenges. Catal Today 145:138–151

    Article  CAS  Google Scholar 

  • Henriksson G, Ander P, Pettersson B, Pettersson G (1995) Cellobiose dehydrogenase (cellobiose oxidase) from Phanerochaete chrysosporium as a wood-degrading enzyme. Studies on cellulose, xylan and synthetic lignin. Appl Microbiol Biotechnol 42:790–796

    Article  CAS  Google Scholar 

  • Hirvonen M, Papageorgiou AC (2003) Crystal structure of a family 45 endoglucanase from Melanocarpus albomyces: Mechanistic implications based on the free and cellobiose-bound forms. J Mol Biol 329:403–410

    Article  CAS  PubMed  Google Scholar 

  • Hogg D, Woo EJ, Bolam DN, McKie VA, Gilbert HJ, Pickersgill RW (2001) Crystal structure of mannanase 26A from Pseudomonas cellulosa and analysis of residues involved in substrate binding. J Biol Chem 276:31186–31192

    Article  CAS  PubMed  Google Scholar 

  • Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink V (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hreggvidsson GO, Kaiste E, Holst O, Eggertsson G, Palsdottir A, Kristjansson JK (1996) An extremely thermostable cellulase from the thermophilic eubacterium Rhodothermus marinus. Appl Environ Microbiol 62:3047–3049

    CAS  Google Scholar 

  • Huang Y, Qin X, Luo XM, Nong Q, Yang Q, Zhang Z, Gao Y, Lv F, Chen Y, Yu Z, Liu JL (2015) Efficient enzymatic hydrolysis and simultaneous saccharification and fermentation of sugarcane bagasse pulp for ethanol production by cellulase from Penicillium oxalicum EU2106 and thermotolerant Saccharomyces cerevisiae ZM1-5. Biomass Bioenergy 77:53–63

    Article  CAS  Google Scholar 

  • Igarashi K, Wada M, Samejima M (2007) Activation of crystalline cellulose to cellulose IIII results in efficient hydrolysis by cellobiohydrolase. FEBS J 274:1785–1792

    Article  CAS  PubMed  Google Scholar 

  • Igarashi K, Uchihashi T, Koivula A, Wada M, Kimura S, Okamoto T, Penttilä M, Ando T, Samejima M (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 333:1279–1282

    Article  CAS  PubMed  Google Scholar 

  • Ilmen M, Thrane C, Penttilä M (1996) The glucose repressor genecre1 of Trichoderma: Isolation and expression of a full-length and a truncated mutant form. Mol Gen Genet 251:451–460

    CAS  PubMed  Google Scholar 

  • Irwin D, Shin DH, Zhang S, Barr BK, Sakon J, Karplus PA, Wilson DB (1998) Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis. J Bacteriol Mycol 180:1709–1714

    CAS  Google Scholar 

  • Jatinder K, Chadha BS, Saini HS (2006) Optimization of medium components for production of cellulases by Melanocarpus sp. MTCC 3922 under solid-state fermentation. World J Microbiol Biotechnol 22:15–22

    Article  CAS  Google Scholar 

  • Joo AR, Jeya M, Lee KM, Lee KM, Moon HJ, Kim YS, Lee JK (2010) Production and characterization of β-1, 4-glucosidase from a strain of Penicillium pinophilum. Process Biochem 45:851–858

    Article  CAS  Google Scholar 

  • Jørgensen H, Olsson L (2006) Production of cellulases by Penicillium brasilianum IBT 20888—Effect of substrate on hydrolytic performance. Enzyme Microb Technol 38:381–390

    Article  CAS  Google Scholar 

  • Jørgensen H, Eriksson T, Börjesson J, Tjerneld F, Olsson L (2003) Purification and characterization of five cellulases and one xylanase from Penicillium brasilianum IBT 20888. Enzyme Microb Technol 32:851–861

    Article  CAS  Google Scholar 

  • Jørgensen H, Mørkeberg A, Krogh KB, Olsson L (2005) Production of cellulases and hemicellulases by three Penicillium species: effect of substrate and evaluation of cellulase adsorption by capillary electrophoresis. Enzyme Microb Technol 36:42–48

    Article  CAS  Google Scholar 

  • Juturu V, Wu JC (2013) Insight into microbial hemicellulases other than xylanases: a review. J Chem Technol Biotechnol 88:353–363

    Article  CAS  Google Scholar 

  • Kaar WE, Holtzapple MT (2000) Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover. Biomass Bioenergy 18:189–199

    Article  CAS  Google Scholar 

  • Kang SW, Park YS, Lee JS, Hong SI, Kim SW (2004) Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour Technol 91:153–156

    Article  CAS  PubMed  Google Scholar 

  • Katapodis P, Vršanská M, Kekos D, Nerinckx W, Biely P, Claeyssens M, Macris BJ, Christakopoulos P (2003) Biochemical and catalytic properties of an endoxylanase purified from the culture filtrate of Sporotrichum thermophile. Carbohydr Res 338:1881–1890

    Article  CAS  PubMed  Google Scholar 

  • Kaur R, Chadha BS, Singh N, Saini HS, Singh S (2002) Amylase hyperproduction by deregulated mutants of the thermophilic fungus Thermomyces lanuginosus. J Ind Microbiol Biotechnol 29:70–74

    Article  CAS  Google Scholar 

  • Kaur B, Sharma M, Soni R, Oberoi HS, Chadha BS (2013) Proteome-based profiling of hypercellulase-producing strains developed through interspecific protoplast fusion between Aspergillus nidulans and Aspergillus tubingensis. Appl Biochem Biotechnol 169:393–407

    Article  CAS  PubMed  Google Scholar 

  • Kaur B, Oberoi HS, Chadha BS (2014) Enhanced cellulase producing mutants developed from heterokaryotic Aspergillus strain. Bioresour Technol 156:100–107

    Article  CAS  PubMed  Google Scholar 

  • Kavitha R, Umesh-Kumar S (2000) Genetic improvement of Aspergillus carbonarius for pectinase overproduction during solid state growth. Biotechnol Bioeng 67:121–125

    Article  CAS  PubMed  Google Scholar 

  • Keshwani DR (2009) Microwave pretreatment of switchgrass for bioethanol production. North Carolina State University, Raleigh

    Google Scholar 

  • Kim TH, Lee YY (2006) Fractionation of corn stover by hot-water and aqueous ammonia treatment. Bioresour Technol 97:224–232

    Article  CAS  PubMed  Google Scholar 

  • Kim TH, Lee YY (2007) Pretreatment of corn stover by soaking in aqueous ammonia at moderate temperatures. Appl Biochem Biotechnol 137:81–92

    PubMed  Google Scholar 

  • Kim TH, Kim JS, Sunwoo C, Lee YY (2003) Pretreatment of corn stover by aqueous ammonia. Bioresour Technol 90:39–47

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Nandakumar MP, Marten MR (2008) The state of proteome profiling in the fungal genus Aspergillus. Brief Funct Genomic Proteomic 7:87–94

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Ståhlberg J, Sandgren M, Paton RS, Beckham GT (2014) Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism. Proc Natl Acad Sci U S A 111:149–154

    Article  CAS  PubMed  Google Scholar 

  • Knob A, Carmona EC (2009) Cell-associated acid β-xylosidase production by Penicillium sclerotiorum. Nat Biotechnol 26:60–67

    CAS  Google Scholar 

  • Knob A, Terrasan CRF, Carmona EC (2010) β-Xylosidases from filamentous fungi: an overview. World J Microbiol Biotechnol 26:389–407

    Article  CAS  Google Scholar 

  • Knob A, Beitel SM, Fortkamp D, Terrasan CRF, Almeida AFD (2013) Production, purification, and characterization of a major Penicillium glabrum xylanase using Brewer’s spent grain as substrate. Biomed Res Int 2013

    Google Scholar 

  • Kocabaş DS, Güder S, Özben N (2015) Purification strategies and properties of a low-molecular weight xylanase and its application in agricultural waste biomass hydrolysis. J Mol Catal B: Enzym 115:66–75

    Article  CAS  Google Scholar 

  • Kordowska-Wiater M, Polak-Berecka M, Wasko A, Targonski Z (2012) Protoplast fusion of Rhizopus oryzae and Rhizopus microsporus for enhanced fumaric acid production from glycerol. Biotechnologia 93:425

    Article  CAS  Google Scholar 

  • Koschorreck K, Richter SM, Ene AB, Roduner E, Schmid RD, Urlacher VB (2008) Cloning and characterization of a new laccase from Bacillus licheniformis catalyzing dimerization of phenolic acids. Appl Microbiol Biotechnol 79:217–224

    Article  CAS  PubMed  Google Scholar 

  • Koshland DE Jr (1953) Stereochemistry and the mechanism of enzymatic reactions. Biol Rev 28:416–436

    Article  CAS  Google Scholar 

  • Krishna C (2005) Solid-state fermentation systems—an overview. Crit Rev Biotechnol 25:1–30

    Article  CAS  PubMed  Google Scholar 

  • Kuhar S, Nair LM, Kuhad RC (2008) Pretreatment of lignocellulosic material with fungi capable of higher lignin degradation and lower carbohydrate degradation improves substrate acid hydrolysis and the eventual conversion to ethanol. Can J Microbiol 54:305–313

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni N, Shendye A, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23:411–456

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  • Kunamneni A, Plou FJ, Ballesteros A, Alcalde M (2008) Laccases and their applications: a patent review. Recent Pat Biotechnol 2:10–24

    Article  CAS  PubMed  Google Scholar 

  • Lansky S, Alalouf O, Solomon HV, Alhassid A, Govada L, Chayen NE, Belrhali H, Shoham Y, Shoham G (2014) A unique octameric structure of Axe2, an intracellular acetyl-xylooligosaccharide esterase from Geobacillus stearothermophilus. Acta Crystallogr Sect D 70:261–278

    Article  CAS  Google Scholar 

  • Laser M, Schulman D, Allen SG, Lichwa J, Antal MJ Jr, Lynd LR (2002) A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresour Technol 81:33–44

    Article  CAS  PubMed  Google Scholar 

  • Laureano-Perez L, Teymouri F, Alizadeh H, Dale BE (2005) Understanding factors that limit enzymatic hydrolysis of biomass. In: Twenty-sixth symposium on biotechnology for fuels and chemicals. Humana Press, New York, pp 1081–1099

    Chapter  Google Scholar 

  • Lee RC, Hrmova M, Burton RA, Lahnstein J, Fincher GB (2003) Bifunctional Family 3 Glycoside Hydrolases from Barley with α-l-Arabinofuranosidase and β-d-Xylosidase Activity characterization, primary structures, and cooh-terminal processing. J Biol Chem 278:5377–5387

    Article  CAS  PubMed  Google Scholar 

  • Lee KM, Jeya M, Joo AR, Singh R, Kim IW, Lee JK (2010) Purification and characterization of a thermostable endo-β-1, 4-glucanase from a novel strain of Penicillium purpurogenum. Enzyme Microb Technol 46:206–211

    Article  CAS  Google Scholar 

  • Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6:41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Irwin DC, Wilson DB (2007) Processivity, substrate binding, and mechanism of cellulose hydrolysis by Thermobifida fusca Cel9A. Appl Environ Microbiol 73:3165–3172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li DC, Li AN, Papageorgiou AC (2011) Cellulases from thermophilic fungi: recent insights and biotechnological potential. Enzym Res 2011

    Google Scholar 

  • Li X, Beeson WT IV, Phillips CM, Marletta MA, Cate JH (2012) Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases. Structure 20:1051–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Pei J, Zhao L, Xie J, Cao F, Wang G (2014) Overexpression and characterization of laccase from Trametes versicolor in Pichia pastoris. Appl Biochem Microbiol 50:140

    Article  CAS  Google Scholar 

  • Liao H, Li S, Wei Z, Shen Q, Xu Y (2014) Insights into high-efficiency lignocellulolytic enzyme production by Penicillium oxalicum GZ-2 induced by a complex substrate. Biotechnol Biofuels 7:162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lima LH, Serpa VI, Rosseto FR, Sartori GR, de Oliveira Neto M, Martínez L, Polikarpov I (2013) Small-angle X-ray scattering and structural modeling of full-length: cellobiohydrolase I from Trichoderma harzianum. Cellulose 20:1573–1585

    Article  CAS  Google Scholar 

  • Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Li J, Zhao S, Zhang R, Wang M, Miao Y, Shen Y, Shen Q (2013a) Secretome diversity and quantitative analysis of cellulolytic Aspergillus fumigatus Z5 in the presence of different carbon sources. Biotechnol Biofuels 6:149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu G, Zhang L, Qin Y, Zou G, Li Z, Yan X, Wei X, Chen M, Chen L, Zheng K, Zhang J (2013b) Long-term strain improvements accumulate mutations in regulatory elements responsible for hyper-production of cellulolytic enzymes. Sci Rep 3:1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu G, Zhang L, Wei X, Zou G, Qin Y, Ma L, Li J, Zheng H, Wang S, Wang C, Xun L (2013c) Genomic and secretomic analyses reveal unique features of the lignocellulolytic enzyme system of Penicillium decumbens. PLoS One 8:e55185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu GT, Ma L, Duan W, Wang BC, Li JH, Xu HG, Yan XQ, Yan BF, Li SH, Wang LJ (2014) Differential proteomic analysis of grapevine leaves by iTRAQ reveals responses to heat stress and subsequent recovery. BMC Plant Boil 14:110

    Article  CAS  Google Scholar 

  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2013) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Y, Li Z, Li X, Liu X, Fan J, Clark JH, Hu C (2018) The production of furfural directly from hemicellulose in lignocellulosic biomass: a review. Catal Today

    Google Scholar 

  • Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma SJ, Leng B, Xu XQ, Zhu XZ, Shi Y, Tao YM, Chen SX, Long MN, Chen QX (2011) Purification and characterization of b-1, 4-glucosidase from Aspergillus glaucus. Afr J Biotechnol 10:19607–19614

    Article  CAS  Google Scholar 

  • Mahajan C, Basotra N, Singh S, Di Falco M, Tsang A, Chadha BS (2016) Malbranchea cinnamomea: a thermophilic fungal source of catalytically efficient lignocellulolytic glycosyl hydrolases and metal dependent enzymes. Bioresour Technol 200:55–63

    Article  CAS  PubMed  Google Scholar 

  • McPhillips K, Waters DM, Parlet C, Walsh DJ, Arendt EK, Murray PG (2014) Purification and characterisation of a β-1,4-Xylanase from Remersonia thermophila CBS 540.69 and its application in bread making. Appl Biochem Biotechnol 172(4):1747–1762

    Article  CAS  PubMed  Google Scholar 

  • Mai V, Wiegel J, Lorenz WW (2000) Cloning, sequencing, and characterization of the bifunctional xylosidase-arabinosidase from the anaerobic thermophile Thermoanaerobacter ethanolicus. Gene 247:137–143

    Article  CAS  PubMed  Google Scholar 

  • Maki M, Leung KT, Qin W (2009) The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci 5:500–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandelman D, Belaich A, Belaich JP, Aghajari N, Driguez H, Haser R (2003) X-ray crystal structure of the multidomain endoglucanase Cel9G from Clostridium cellulolyticum complexed with natural and synthetic cello-oligosaccharides. J Bacteriol 185:4127–4135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margeot A, Hahn-Hagerdal B, Edlund M, Slade R, Monot F (2009) New improvements for lignocellulosic ethanol. Curr Opin Biotechnol 20:372–380

    Article  CAS  PubMed  Google Scholar 

  • Marjamaa K, Toth K, Bromann PA, Szakacs G, Kruus K (2013) Novel Penicillium cellulases for total hydrolysis of lignocellulosics. Enzyme Microb Technol 52:358–369

    Article  CAS  PubMed  Google Scholar 

  • Martins LF, Kolling D, Camassola M, Dillon AJ, Ramos LP (2008) Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates. Bioresour Technol 99:1417–1424

    Article  CAS  PubMed  Google Scholar 

  • Marx IJ, van Wyk N, Smit S, Jacobson D, Viljoen-Bloom M, Volschenk H (2013) Comparative secretome analysis of Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30 during solid-state fermentation on sugarcane bagasse. Biotechnol Biofuels 6:172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mba Medie F, Davies GJ, Drancourt M, Henrissat B (2012) Genome analyses highlight the different biological roles of cellulases. Nat Rev Microbiol 10:227–234

    Article  CAS  PubMed  Google Scholar 

  • McLean BW, Bray MR, Boraston AB, Gilkes NR, Haynes CA, Kilburn DG (2000) Analysis of binding of the family 2a carbohydrate-binding module from Cellulomonas fimi xylanase 10A to cellulose: specificity and identification of functionally important amino acid residues. Protein Eng 13:801–809

    Article  CAS  PubMed  Google Scholar 

  • Merino ST, Cherry J (2007) Progress and challenges in enzyme development for biomass utilization. In: Biofuels. Springer, Berlin/Heidelberg, pp 95–120

    Chapter  Google Scholar 

  • Mesa L, González E, Cara C, González M, Castro E, Mussatto SI (2011) The effect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse. Chem Eng J 168:1157–1162

    Article  CAS  Google Scholar 

  • Messerschmidt A, Huber R (1990) The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin modelling and structural relationships. Eur J Biochem 187:341–352

    Article  CAS  PubMed  Google Scholar 

  • Mingardon F, Chanal A, López-Contreras AM, Dray C, Bayer EA, Fierobe HP (2007) Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes. Appl Environ Microbiol 73:3822–3832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miotto LS, de Rezende CA, Bernardes A, Serpa VI, Tsang A, Polikarpov I (2014) The characterization of the endoglucanase Cel12A from Gloeophyllum trabeum reveals an enzyme highly active on β-glucan. PLoS One 9:e108393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Modenbach A (2013) Sodium hydroxide pretreatment of corn stover and subsequent enzymatic hydrolysis: an investigation of yields, kinetic modeling and glucose recovery

    Google Scholar 

  • Molinier AL, Nouailler M, Valette O, Tardif C, Receveur-Bréchot V, Fierobe HP (2011) Synergy, structure and conformational flexibility of hybrid cellulosomes displaying various inter-cohesins linkers. J Mol Biol 405:143–157

    Article  CAS  PubMed  Google Scholar 

  • Montibeller VW, de Souza Vandenberghe LP, Amore A, Soccol CR, Birolo L, Vinciguerra R, Salmon DNX, Spier MR, Faraco V (2014) Characterization of hemicellulolytic enzymes produced by Aspergillus niger NRRL 328 under solid state fermentation on soybean husks. BioResources 9:7128–7140

    Google Scholar 

  • Moraïs S, Morag E, Barak Y, Goldman D, Hadar Y, Lamed R, Shoham Y, Wilson DB, Bayer EA (2012) Deconstruction of lignocellulose into soluble sugars by native and designer cellulosomes. MBio 3:e00508-e00512

    Article  CAS  Google Scholar 

  • Mosier N, Hendrickson R, Ho N, Sedlak M, Ladisch MR (2005) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 96:1986–1993

    Article  CAS  PubMed  Google Scholar 

  • Motta FL, Andrade CCP, Santana MHA (2013) A review of xylanase production by the fermentation of xylan: classification, characterization and applications. In: Sustainable degradation of lignocellulosic biomass-techniques, applications and commercialization. Intech

    Google Scholar 

  • Müller G, Kalyani DC, Horn SJ (2017) LPMOs in cellulase mixtures affect fermentation strategies for lactic acid production from lignocellulosic biomass. Biotechnol Bioeng 114:552–559

    Article  CAS  PubMed  Google Scholar 

  • Nakagame S, Furujyo A, Sugiura J (2006) Purification and characterization of cellobiose dehydrogenase from white-rot basidiomycete Trametes hirsuta. Biosci Biotechnol Biochem 70:1629–1635

    Article  CAS  PubMed  Google Scholar 

  • Nitta M, Furukawa T, Shida Y, Mori K, Kuhara S, Morikawa Y, Ogasawara W (2012) A new Zn(II)(2)Cys(6)-type transcription factor BglR regulates β-glucosidase expression in Trichoderma reesei. Fungal Genet Biol 49:388–397

    Article  CAS  PubMed  Google Scholar 

  • Noach I, Levy-Assaraf M, Lamed R, Shimon LJ, Frolow F, Bayer EA (2010) Modular arrangement of a cellulosomal scaffoldin subunit revealed from the crystal structure of a cohesin dyad. J Mol Biol 399:294–305

    Article  CAS  PubMed  Google Scholar 

  • Nurizzo D, Turkenburg JP, Charnock SJ, Roberts SM, Dodson EJ, McKie VA, Taylor EJ, Gilbert HJ, Davies GJ (2002) Cellvibrio japonicus alpha-L-arabinanase 43A has a novel five-blade beta-propeller fold. Nat Struct Biol 9:665–668

    Article  CAS  PubMed  Google Scholar 

  • Ogawa K, Ohara H, Koide T, Toyama N (1989) Intraspecific hybridization of Trichoderma reesei by protoplast fusion. J Ferment Bioeng 67:207–209

    Article  CAS  Google Scholar 

  • Ogawa A, Suzumatsu A, Takizawa S, Kubota H, Sawada K, Hakamada Y, Kawai S, Kobayashi T, Ito S (2007) Endoglucanases from Paenibacillus spp. form a new clan in glycoside hydrolase family 5. J Biotechnol 129:406–414

    Article  CAS  PubMed  Google Scholar 

  • Ogunmolu FE, Kaur I, Gupta M, Bashir Z, Pasari N, Yazdani SS (2015) Proteomics Insights into the Biomass Hydrolysis Potentials of a Hypercellulolytic Fungus Penicillium funiculosum. J Proteome Res 14(10):4342–4358

    Article  CAS  PubMed  Google Scholar 

  • Ohta K, Fujimoto H, Fujii S, Wakiyama M (2010) Cell-associated beta-xylosidase from Aureobasidium pullulans ATCC 20524: Purification, properties, and characterization of the encoding gene. J Biosci Bioeng 110:152–157

    Article  CAS  PubMed  Google Scholar 

  • Oiatchenko L, Lau YFC et al (1996) Suppression Substractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci U S A 93:6025–6030

    Article  Google Scholar 

  • Ottenheim C, Werner KA, Zimmermann W, Wu JC (2015) Improved endoxylanase production and colony morphology of Aspergillus niger DSM 26641 by γ-ray induced mutagenesis. Biochem Eng J 94:9–14

    Article  CAS  Google Scholar 

  • Oyekola OO, Ngesi N, Whiteley CG (2007) Isolation, purification and characterisation of an endoglucanase and β-glucosidase from an anaerobic sulphidogenic bioreactor. Enzyme Microb Technol 40:637–644

    Article  CAS  Google Scholar 

  • Paës G, Berrin JG, Beaugrand J (2012) GH11 xylanases: structure/function/properties relationships and applications. Biotechnol Adv 30:564–592

    Article  CAS  PubMed  Google Scholar 

  • Pan X, Xie D, Gilkes N, Gregg DJ, Saddler JN (2005) Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content. Appl Biochem Biotechnol 124:1069–1079

    Article  Google Scholar 

  • Panagiotou G, Olavarria R, Olsson L (2007) Penicillium brasilianum as an enzyme factory; the essential role of feruloyl esterases for the hydrolysis of the plant cell wall. J Biotechnol 130:219–228

    Article  CAS  PubMed  Google Scholar 

  • Pandey A (2003) Solid-state fermentation. Biochem Eng J 13:81–84

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR, Mitchell D (2000) New developments in solid state fermentation: I-bioprocesses and products. Process Biochem 35:1153–1169

    Article  CAS  Google Scholar 

  • Pang J, Liu ZY, Hao M, Zhang YF, Qi QS (2017) An isolated cellulolytic Escherichia coli from bovine rumen produces ethanol and hydrogen from corn straw. Biotechnol Biofuels 10:165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasha C, Kuhad RC, Rao LV (2007) Strain improvement of thermotolerant Saccharomyces cerevisiae VS3 strain for better utilization of lignocellulosic substrates. J Appl Microbiol 103:1480–1489

    Article  CAS  PubMed  Google Scholar 

  • Pavlou MP, Diamandis EP (2010) The cancer cell secretome: a good source for discovering biomarkers? J Proteomics 73:1896–1906

    Article  CAS  PubMed  Google Scholar 

  • Pawlik A, Wójcik M, Rułka K, Motyl-Gorzel K, Osińska-Jaroszuk M, Wielbo J, Marek-Kozaczuk M, Skorupska A, Rogalski J, Janusz G (2016) Purification and characterization of laccase from Sinorhizobium meliloti and analysis of the lacc gene. Int J Biol Macromol 92:138–147

    Article  CAS  PubMed  Google Scholar 

  • Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT (2015) Fungal cellulases. Chem Rev 115:1308–1448

    Article  CAS  PubMed  Google Scholar 

  • Pérez JA, Ballesteros I, Ballesteros M, Sáez F, Negro MJ, Manzanares P (2008) Optimizing liquid hot water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel 87:3640–3647

    Article  CAS  Google Scholar 

  • Petri R, Schmidt-Dannert C (2004) Dealing with complexity: evolutionary engineering and genome shuffling. Curr Opin Biotechnol 15:298–304

    Article  CAS  PubMed  Google Scholar 

  • Phillips CM, Beeson WT, Cate JH, Marletta MA (2011) Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem Biol 6:1399–1406

    Article  CAS  PubMed  Google Scholar 

  • Phitsuwan P, Laohakunjit N, Kerdchoechuen O, Kyu KL, Ratanakhanokchai K (2013) Present and potential applications of cellulases in agriculture, biotechnology, and bioenergy. Folia Microbiol (Praha) 58:163–176

    Article  CAS  Google Scholar 

  • Poidevin L, Feliu J, Doan A, Berrin JG, Bey M, Coutinho PM, Henrissat B, Record E, Heiss-Blanquet S (2013) Insights into exo- and endoglucanase activities of family 6 glycoside hydrolases from Podospora anserina. Appl Environ Microbiol 79:4220–4229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prabavathy VR, Mathivanan N, Sagadevan E, Murugesan K, Lalithakumari D (2006) Intra-strain protoplast fusion enhances carboxymethyl cellulase activity in Trichoderma reesei. Enzyme Microb Technol 38:719–723

    Article  CAS  Google Scholar 

  • Prasad RK, Chatterjee S, Sharma S, Mazumder PB, Vairale MG, Raju PS (2018) Insect gut bacteria and their potential application in degradation of lignocellulosic biomass: a review. In: Bioremediation: applications for environmental protection and management. Springer, Singapore, pp 277–299

    Chapter  Google Scholar 

  • Pu Y, Zhang D, Singh PM, Ragauskas AJ (2008) The new forestry biofuels sector. Biofuel Bioprod Biorefin 2:58–73

    Article  CAS  Google Scholar 

  • Quinlan RJ, Sweeney MD, Lo Leggio L, Otten H, Poulsen JC, Johansen KS, Krogh KB, Jørgensen CI, Tovborg M, Anthonsen A, Tryfona T, Walter CP, Dupree P, Xu F, Davies GJ, Walton PH (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci U S A 108:15079–15084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai R, Kaur B, Chadha BS (2016a) A method for rapid purification and evaluation of catalytically distinct lignocellulolytic glycosyl hydrolases from thermotolerant fungus Acrophialophora sp. Renew Energy 98:254–263

    Article  CAS  Google Scholar 

  • Rai R, Kaur B, Singh S, Di Falco M, Tsang A, Chadha BS (2016b) Evaluation of secretome of highly efficient lignocellulolytic Penicillium sp. Dal 5 isolated from rhizosphere of conifers. Bioresour Technol 216:958–967

    Article  CAS  PubMed  Google Scholar 

  • Rakotoarivonina H, Hermant B, Chabbert B, Touzel JP, Remond C (2011) A thermostable feruloyl-esterase from the hemicellulolytic bacterium Thermobacillus xylanilyticus releases phenolic acids from non-pretreated plant cell walls. Appl Microbiol Biotechnol 90:541–552

    Article  CAS  PubMed  Google Scholar 

  • Ralser M, Wamelink MM, Struys EA, Joppich C, Krobitsch S, Jakobs C, Lehrach H (2008) A catabolic block does not sufficiently explain how 2-deoxy-D-glucose inhibits cell growth. Proc Natl Acad Sci U S A 105:17807–17811

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramírez-Cavazos LI, Junghanns C, Ornelas-Soto N, Cárdenas-Chávez DL, Hernández-Luna C, Demarche P, Enaud E, García-Morales R, Agathos SN, Parra R (2014) Purification and characterization of two thermostable laccases from Pycnoporus sanguineus and potential role in degradation of endocrine disrupting chemicals. J Mol Catal B: Enzym 108:32–42

    Article  CAS  Google Scholar 

  • Ravalason H, Jan G, Mollé D, Pasco M, Coutinho PM, Lapierre C, Pollet B, Bertaud F, Petit-Conil M, Grisel S, Sigoillot JC (2008) Secretome analysis of Phanerochaete chrysosporium strain CIRM-BRFM41 grown on softwood. Appl Microbiol Biotechnol 80:719

    Article  CAS  PubMed  Google Scholar 

  • Ravanal MC, Alegría-Arcos M, Gonzalez-Nilo FD, Eyzaguirre J (2013) Penicillium purpurogenum produces two GH family 43 enzymes with β-xylosidase activity, one monofunctional and the other bifunctional: Biochemical and structural analyses explain the difference. Arch Biochem Biophys 540:117–124

    Article  CAS  PubMed  Google Scholar 

  • Rehman L, Su X, Guo H, Qi X, Cheng H (2016) Protoplast transformation as a potential platform for exploring gene function in Verticillium dahliae. BMC Biotechnol 16:57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roig A, Cayuela ML, Sánchez-Monedero MA (2006) An overview on olive mill wastes and their valorisation methods. Waste Manag 26:960–969

    Article  CAS  PubMed  Google Scholar 

  • Romero MD, Aguado J, González L, Ladero M (1999) Cellulase production by Neurospora crassa on wheat straw. Enzyme Microb Technol 25:244–250

    Article  CAS  Google Scholar 

  • Ruijter GJ, Visser J (1997) Carbon repression in Aspergilli. FEMS Microbiol Lett 151:103–114

    Article  CAS  PubMed  Google Scholar 

  • Sadhu S, Maiti TK (2013) Cellulase production by bacteria: a review. Br Microbiol Res J 3:235

    Article  CAS  Google Scholar 

  • Saha BC (2000) α-L-Arabinofuranosidases: biochemistry, molecular biology and application in biotechnology. Biotechnol Adv 18:403–423

    Article  CAS  PubMed  Google Scholar 

  • Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40:3693–3700

    Article  CAS  Google Scholar 

  • Saha T, Ghosh D, Mukherjee S, Bose S, Mukherjee M (2008) Cellobiose dehydrogenase production by the mycelial culture of the mushroom Termitomyces clypeatus. Process Biochem 43:634–641

    Article  CAS  Google Scholar 

  • Saini JK, Singhania RR, Satlewal A, Saini R, Gupta R, Tuli D, Mathur A, Adsul M (2016) Improvement of wheat straw hydrolysis by cellulolytic blends of two Penicillium spp. Renew Energy 98:43–50

    Article  CAS  Google Scholar 

  • Sakon J, Adney WS, Himmel ME, Thomas SR, Karplus PA (1996) Crystal structure of thermostable family 5 endocellulase E1 from Acidothermus cellulolyticus in complex with cellotetraose. Biochemistry 35:10648–10660

    Article  CAS  PubMed  Google Scholar 

  • Sammond DW, Payne CM, Brunecky R, Himmel ME, Crowley MF, Beckham GT (2012) Cellulase linkers are optimized based on domain type and function: insights from sequence analysis, biophysical measurements, and molecular simulation. PLoS One 7:e48615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Liu F, Koc H, Tien M (2007) Expression analysis of extracellular proteins from Phanerochaete chrysosporium grown on different liquid and solid substrates. Microbiology 153:3023–3033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savitha S, Sadhasivam S, Swaminathan K (2010) Regeneration and molecular characterization of an intergeneric hybrid between Graphium putredinis and Trichoderma harzianum by protoplasmic fusion. Biotechnol Adv 28:285–292

    Article  CAS  PubMed  Google Scholar 

  • Sawicka-Zukowska R, Juszczakiewicz D, Misiewicz A, Krakowiak A, Jêdrychowska B (2004) Intensification of lipase biosynthesis as a result of electrofusion of Rhizopus cohnii protoplasts. J Appl Genet 45:37–48

    PubMed  Google Scholar 

  • Schacht C, Zetzl C, Brunner G (2008) From plant materials to ethanol by means of supercritical fluid technology. J Supercrit Fluids 46:299–321

    Article  CAS  Google Scholar 

  • Schmer MR, Vogel KP, Mitchell RB, Perrin RK (2008) Net energy of cellulosic ethanol from switchgrass. Proc Natl Acad Sci USA 105:464–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sehnem NT, de Bittencourt LR, Camassola M, Dillon AJ (2006) Cellulase production by Penicillium echinulatum on lactose. Appl Microbiol Biotechnol 72:163–167

    Article  CAS  PubMed  Google Scholar 

  • Shah A, Patel H, Narra M (2017) Bioproduction of fungal cellulases and hemicellulases through solid state fermentation. Fungal Metabolites:349–393

    Google Scholar 

  • Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Chadha BS, Saini HS (2010) Purification and characterization of two thermostable xylanases from Malbranchea flava active under alkaline conditions. Bioresour Technol 101:8834–8842

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Chinn MS, Sharma-Shivappa RR (2008) Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium. Bioresour Technol 99:6556–6564

    Article  CAS  PubMed  Google Scholar 

  • Shibafuji Y, Nakamura A, Uchihashi T, Sugimoto N, Fukuda S, Watanabe H, Samejima M, Ando T, Noji H, Koivula A, Igarashi K (2014) Single-molecule imaging analysis of elementary reaction steps of Trichoderma reesei cellobiohydrolase I (Cel7A) hydrolyzing crystalline cellulose Iα and IIII. J Biol Chem 289:14056–14065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinoda S, Kanamasa S, Arai M (2012) Cloning of an endoglycanase gene from Paenibacillus cookie and characterization of the recombinant enzyme. Biotechnol Lett 34:281–286

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki A, Kawakami T, Hosokawa S, Sakamoto T (2014) A novel GH43 α-l-arabinofuranosidase of Penicillium chrysogenum that preferentially degrades single-substituted arabinosyl side chains in arabinan. Enzyme Microb Technol 58:80–86

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Suman A, Tiwari P, Arya N, Gaur A, Shrivastava AK (2008) Biological pretreatment of sugarcane trash for its conversion to fermentable sugars. World J Microbiol Biotechnol 24:667–673

    Article  CAS  Google Scholar 

  • Singh A, Singh N, Bishnoi NR (2009a) Production of cellulases by Aspergillus heteromorphus from wheat straw under submerged fermentation. Int J Civil Env Eng 1

    Google Scholar 

  • Singh R, Varma AJ, Laxman RS, Rao M (2009b) Hydrolysis of cellulose derived from steam exploded bagasse by Penicillium cellulases: comparison with commercial cellulase. Bioresour Technol 100:6679–6681

    Article  CAS  PubMed  Google Scholar 

  • Singhania RR, Patel AK, Sukumaran RK, Larroche C, Pandey A (2013) Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour Technol 127:500–507

    Article  CAS  PubMed  Google Scholar 

  • Sinnott ML (1990) Catalytic mechanism of enzymic glycosyl transfer. Chem Rev 90:1171–1202

    Article  CAS  Google Scholar 

  • Smith SP, Bayer EA (2013) Insights into cellulosome assembly and dynamics: from dissection to reconstruction of the supramolecular enzyme complex. Curr Opin Struct Biol 23:686–694

    Article  CAS  PubMed  Google Scholar 

  • Smith SP, Bayer EA, Czjzek M (2017) Continually emerging mechanistic complexity of the multi-enzyme cellulosome complex. Curr Opin Struct Biol 44:151–160

    Article  CAS  PubMed  Google Scholar 

  • Socha AM, Parthasarathi R, Shi J, Pattathil S, Whyte D, Bergeron M, George A, Tran K, Stavila V, Venkatachalam S, Hahn MG (2014) Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose. Proc Natl Acad Sci 111:3587–3595

    Article  CAS  Google Scholar 

  • Song W, Han X, Qian Y, Liu G, Yao G, Zhong Y, Qu Y (2016) Proteomic analysis of the biomass hydrolytic potentials of Penicillium oxalicum lignocellulolytic enzyme system. Biotechnol Biofuels 9:68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza FHM, Nascimento CV, Rosa JC, Masui DC, Leone FA, Jorge JA, Furriel RPM (2010) Purification and biochemical characterization of a mycelial glucose-and xylose-stimulated β-glucosidase from the thermophilic fungus Humicola insolens. Process Biochem 45:272–278

    Article  CAS  Google Scholar 

  • Stern J, Moraïs S, Lamed R, Bayer EA (2016) Adaptor scaffoldins: An original strategy for extended designer cellulosomes, inspired from nature. MBio 7:e00083-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Sukumaran RK, Surender VJ, Sindhu R, Binod P, Janu KU, Sajna KV, Rajasree KP, Pandey A (2010) Lignocellulosic ethanol in India: prospects, challenges and feedstock availability. Bioresour Technol 101:4826–4833

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Liu Z, Zheng K, Song X, Qu Y (2008) The composition of basal and induced cellulase systems in Penicillium decumbens under induction or repression conditions. Enzyme Microb Technol 42:560–567

    Article  CAS  Google Scholar 

  • Sweeney MD, Xu F (2012) Biomass converting enzymes as industrial biocatalysts for fuels and chemicals: recent developments. Catalysts 2:244–263

    Article  CAS  Google Scholar 

  • Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan TC, Kracher D, Gandini R, Sygmund C, Kittl R, Haltrich D, Hällberg BM, Ludwig R, Divne C (2015) Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation. Nat Commun 6:7542

    Article  PubMed  Google Scholar 

  • Tenkanen M, Vršanská M, Siikaaho M, Wong DW, Puchart V, Penttilä M, Saloheimo M, Biely P (2013) Xylanase XYN IV from Trichoderma reesei showing exo and endo xylanase activity. FEBS J 280:285–301

    Article  CAS  PubMed  Google Scholar 

  • Terrasan CRF, Temer B, Duarte MCT, Carmona EC (2010) Production of xylanolytic enzymes by Penicillium janczewskii. Bioresour Technol 101:4139–4143

    Article  CAS  PubMed  Google Scholar 

  • Thangamani D (2005) Strain improvement of industrially important filamentous fungi through protoplast fusion and their biotechnological applications

    Google Scholar 

  • Tian C, Beeson WT, Iavarone AT, Sun J, Marletta MA, Cate JH, Glass NL (2009) Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa. Proc Natl Acad Sci USA 106:22157–22162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian SQ, Zhao RY, Chen ZC (2018) Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials. Renew Sustain Energy Rev 91:483–489

    Article  CAS  Google Scholar 

  • Todd RB, Lockington RA, Kelly JM (2000) The Aspergillus nidulans creC gene involved in carbon catabolite repression encodes a WD40 repeat protein. Mol Gen Genet 263:561–570

    Article  CAS  PubMed  Google Scholar 

  • Uday USP, Choudhury P, Bandyopadhyay TK, Bhunia B (2016) Classification, mode of action and production strategy of xylanase and its application for biofuel production from water hyacinth. Int J Biol Macromol 82:1041–1054

    Article  CAS  PubMed  Google Scholar 

  • Ulaganathan K, Goud B, Reddy M, Kumar V, Balsingh J, Radhakrishna S (2015) Proteins for breaking barriers in lignocellulosic bioethanol production. Curr Protein Pept Sci 16:100–134

    Article  CAS  PubMed  Google Scholar 

  • Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, Sørlie M, Eijsink VG (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330:219–222

    Article  CAS  PubMed  Google Scholar 

  • Vaidyanathan S, Macaloney G, Vaughan J, McNeil B, Harvey LM (1999) Monitoring of submerged bioprocesses. Crit Rev Biotechnol 19:277–316

    Article  CAS  Google Scholar 

  • Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vardakou M, Flint J, Christakopoulos P, Lewis RJ, Gilbert HJ, Murray JW (2005) A family 10 Thermoascus aurantiacus Xylanase utilizes arabinose decorations of Xylan as significant substrate specificity determinants. J Mol Biol 352(5):1060–1067

    Google Scholar 

  • Vardakou M, Dumon C, Murray JW, Christakopoulos P, Weiner DP, Juge N, Lewis RJ, Gilbert HJ, Flint JE (2008) Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases. J Mol Biol 375:1293–1305

    Article  CAS  PubMed  Google Scholar 

  • Vazana Y, Moraïs S, Barak Y, Lamed R, Bayer EA (2012) Designer cellulosomes for enhanced hydrolysis of cellulosic substrates. Methods Enzymol 510:429–452

    Article  CAS  PubMed  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484

    Article  CAS  PubMed  Google Scholar 

  • Vu VV, Beeson WT, Span EA, Farquhar ER, Marletta MA (2014) A family of starch-active polysaccharide monooxygenases. Proc Natl Acad Sci U S A 111:13822–13827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vuong TV, Wilson DB (2010) Glycoside hydrolases: catalytic base/nucleophile diversity. Biotechnol Bioeng 107:195–205

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Liu X, Yu Q, Zhang X, Qu Y, Gao P, Wang T (2005) Directed evolution for engineering pH profile of endoglucanase III from Trichoderma reesei. Biomol Eng 22:89–94

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Kurland CG, Caetano-Anollés G (2011) Reductive evolution of proteomes and protein structures. Proc Natl Acad Sci U S A 108:11954–11958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warnick TA, Methe BA, Leschine SB (2002) Clostridium phytofermentans sp. Nov. a cellulolytic mesophile from forest soil. Int J Syst Evol Microbiol 52:1155–1160

    Article  CAS  PubMed  Google Scholar 

  • Watson BJ, Zhang H, Longmire AG, Moon YH, Hutcheson SW (2009) Processive endoglucanases mediate degradation of cellulose by Saccharophagus degradans. J Bacteriol 191:5697–5705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westereng B, Ishida T, Vaaje-Kolstad G, Wu M, Eijsink VG, Igarashi K, Samejima M, Ståhlberg J, Horn SJ, Sandgren M (2011) The putative endoglucanase PcGH61D from Phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose. PLoS One 6:27807

    Article  CAS  Google Scholar 

  • Wijaya YP, Putra RDD, Widyaya VT, Ha JM, Suh DJ, Kim CS (2014) Comparative study on two-step concentrated acid hydrolysis for the extraction of sugars from lignocellulosic biomass. Bioresour Technol 164:221–231

    Article  CAS  PubMed  Google Scholar 

  • Wong KK, Saddler JN (1992) Trichoderma xylanases, their properties and application. Crit Rev Biotechnol 12:413–435

    Article  CAS  Google Scholar 

  • Wood TM, McCRAE SI, Bhat KM (1989) The mechanism of fungal cellulase action, Synergism between enzyme components of Penicillium pinophilum cellulase in solubilizing hydrogen bond-ordered cellulose. Biochem J 260:37–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woon JSK, Murad AMA, Abu Bakar FD (2015) Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli. In AIP Conference Proceedings 1678: 30004

    Google Scholar 

  • Wu YR, Luo ZH, Chow RKK, Vrijmoed LLP (2010) Purification and characterization of an extracellular laccase from the anthracene-degrading fungus Fusarium solani MAS2. Bioresour Technol 101:9772–9777

    Article  CAS  PubMed  Google Scholar 

  • Wyman C (1996) Handbook on bioethanol: production and utilization. CRC Press, Boca Raton

    Google Scholar 

  • Xiao W, Yin W, Xia S, Ma P (2012) The study of factors affecting the enzymatic hydrolysis of cellulose after ionic liquid pretreatment. Carbohydr Polym 87:2019–2023

    Article  CAS  Google Scholar 

  • Xu F, Ding H (2007) A new kinetic model for heterogeneous (or spatially confined) enzymatic catalysis: contributions from the fractal and jamming (overcrowding) effects. Appl Catal Gen 317:70–81

    Article  CAS  Google Scholar 

  • Yachmenev V, Condon B, Klasson T, Lambert A (2009) Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound. J Biobased Mater Bio 3:25–31

    Article  CAS  Google Scholar 

  • Yang B, Wyman CE (2006) BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol Bioeng 94:611–617

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Gong Y, Liu G, Zhao S, Wang J (2015) Enhancing cellulase production in thermophilic fungus Myceliophthora thermophila ATCC42464 by RNA interference of cre1 gene expression. J Microbiol Biotechnol 25:1101–1107

    Article  CAS  PubMed  Google Scholar 

  • Yao G, Li Z, Gao L, Wu R, Kan Q, Liu G, Qu Y (2015) Redesigning the regulatory pathway to enhance cellulase production in Penicillium oxalicum. Biotechnol Biofuels 8:71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo CG, Nghiem NP, Hicks KB, Kim TH (2011) Pretreatment of corn stover using low-moisture anhydrous ammonia (LMAA) process. Bioresour Technol 102:10028–10034

    Article  CAS  PubMed  Google Scholar 

  • Zambare VP, Bhalla A, Muthukumarappan K, Sani RK, Christopher LP (2011) Bioprocessing of agricultural residues to ethanol utilizing a cellulolytic extremophile. Extremophiles 15:611

    Article  CAS  PubMed  Google Scholar 

  • Zamocky M, Ludwig R, Peterbauer C, Hallberg BM, Divne C, Nicholls P, Haltrich D (2006) Cellobiose dehydrogenase-a flavocytochrome from wood-degrading, phytopathogenic and saprotropic fungi. Curr Protein Pept Sci 7:255–280

    Article  CAS  PubMed  Google Scholar 

  • Zeng R, Hu Q, Yin XY, Huang H, Yan JB, Gong ZW, Yang ZH (2016) Cloning a novel endo-1, 4-β-d-glucanase gene from Trichoderma virens and heterologous expression in E. coli. AMB Express 6:108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Cai W (2008) Enzymatic hydrolysis of alkali-pretreated rice straw by Trichoderma reesei ZM4-F3. Biomass Bioenergy 32:1130–1135

    Article  CAS  Google Scholar 

  • Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824

    Article  CAS  PubMed  Google Scholar 

  • Zhang YHP, Lynd LR (2006) A functionally based model for hydrolysis of cellulose by fungal cellulase. Biotechnol Bioeng 94:888–898

    Article  CAS  PubMed  Google Scholar 

  • Zhang YHP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481

    Article  CAS  Google Scholar 

  • Zhang C, Wang Y, Li Z, Zhou X, Zhang W, Zhao Y, Lu X (2014) Characterization of a multi-function processive endoglucanase CHU_2103 from Cytophaga hutchinsonii. Appl Microbiol Biotechnol 98:6679–6687

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbial Biotechnol 82:815

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rai, R., Agrawal, D., Chadha, B.S. (2019). New Paradigm in Degradation of Lignocellulosic Biomass and Discovery of Novel Microbial Strains. In: Satyanarayana, T., Das, S., Johri, B. (eds) Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-8487-5_16

Download citation

Publish with us

Policies and ethics