Skip to main content

Theory: Aqueous Charge Injection by Solvation

  • Chapter
  • First Online:
Solvation Dynamics

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 121))

Abstract

Solvation is a process of aqueous charge injection in the forms of H+, electrons, electron lone pairs, cations, anions, or  molecular dipoles with long- and short-range interaction. A solute interacts with its neighboring H2O molecules through the O:H vdW, O:⇔:O super-HB compression, H↔H anti-HB fragilization, ionic or dipolar polarization with screen shielding, and solute-solute interaction and their combinations. The hydration H2O dipoles tend to be aligned oppositely along the electric field screen in turn the electric fields of the solute. The ionic size, charge quantity, and the numbers and spatial distribution of H+ and “:” determine the form of solute-solvent interaction. A solute may be sensitive or not to interference of other solutes depending on the solute size and its extent of screening. The intermolecular nonbond and intramolecular bond cooperative relaxation determines the performance of a solution in terms of surface stress, solution viscosity, energy absorption-emission-dissipation at solvation, solvation temperature, thermal stability, critical pressures and pressures for phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Qi, Q. Wang, P. Ren, General van der Waals potential for common organic molecules. Bioorg. Med. Chem. 24(20), 4911–4919 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  2. P.W. Atkins, Physical Chemistry, 4 edn. (Oxford University Press, 1990)

    Google Scholar 

  3. C. Vega, J.L.F. Abascal, M.M. Conde, J.L. Aragones, What ice can teach us about water interactions: a critical comparison of the performance of different water models. Faraday Discuss. 141, 251–276 (2009)

    Article  CAS  PubMed  Google Scholar 

  4. V. Molinero, E.B. Moore, Water modeled as an intermediate element between carbon and silicon. J. Phys. Chem. B 113(13), 4008–4016 (2009)

    Article  CAS  PubMed  Google Scholar 

  5. P.T. Kiss, A. Baranyai, Density maximum and polarizable models of water. J. Chem. Phys. 137(8), 084506–084508 (2012)

    Article  PubMed  CAS  Google Scholar 

  6. Y. Huang, X. Zhang, Z. Ma, Y. Zhou, J. Zhou, W. Zheng, C.Q. Sun, Size, separation, structure order, and mass density of molecules packing in water and ice. Sci. Rep. 3, 3005 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  7. J. Alejandre, G.A. Chapela, H. Saint-Martin, N. Mendoza, A non-polarizable model of water that yields the dielectric constant and the density anomalies of the liquid: TIP4Q. Phys. Chem. Chem. Phys. 13, 19728–19740 (2011)

    Article  CAS  PubMed  Google Scholar 

  8. M. Zhao, W.T. Zheng, J.C. Li, Z. Wen, M.X. Gu, C.Q. Sun, Atomistic origin, temperature dependence, and responsibilities of surface energetics: an extended broken-bond rule. Phys. Rev. B 75(8), 085427 (2007)

    Article  CAS  Google Scholar 

  9. C.Q. Sun, Y. Sun, The attribute of water: single notion, multiple myths. Springer Ser. Chem. Phys. 113 (2016)

    Google Scholar 

  10. C.Q. Sun, Relaxation of the chemical bond. Springer Ser. Chem. Phys. 108 (2014)

    Google Scholar 

  11. C.Q. Sun, Oxidation electronics: bond-band-barrier correlation and its applications. Prog. Mater Sci. 48(6), 521–685 (2003)

    Article  CAS  Google Scholar 

  12. W.T. Zheng, C.Q. Sun, Electronic process of nitriding: Mechanism and applications. Prog. Solid State Chem. 34(1), 1–20 (2006)

    Article  CAS  Google Scholar 

  13. Z. Zhang, D. Li, W. Jiang, Z. Wang, The electron density delocalization of hydrogen bond systems. Adv. Phys. X 3(1), 1428915 (2018)

    Google Scholar 

  14. Y. Mo, J. Gao, Polarization and charge-transfer effects in aqueous solution via Ab initio QM/MM simulations. J. Phys. Chem. B 110(7), 2976–2980 (2006)

    Article  CAS  PubMed  Google Scholar 

  15. C.Q. Sun, Dominance of broken bonds and nonbonding electrons at the nanoscale. Nanoscale 2(10), 1930–1961 (2010)

    Article  CAS  PubMed  Google Scholar 

  16. Y.L. Huang, X. Zhang, Z.S. Ma, Y.C. Zhou, W.T. Zheng, J. Zhou, C.Q. Sun, Hydrogen-bond relaxation dynamics: resolving mysteries of water ice. Coord. Chem. Rev. 285, 109–165 (2015)

    Article  CAS  Google Scholar 

  17. J.R. Lane, CCSDTQ optimized geometry of water dimer. J. Chem. Theory Comput. 9(1), 316–323 (2013)

    Article  CAS  PubMed  Google Scholar 

  18. X. Zhang, Y. Zhou, Y. Gong, Y. Huang, C. Sun, Resolving H(Cl, Br, I) capabilities of transforming solution hydrogen-bond and surface-stress. Chem. Phys. Lett. 678, 233–240 (2017)

    Article  CAS  Google Scholar 

  19. Y. Zhou, D. Wu, Y. Gong, Z. Ma, Y. Huang, X. Zhang, C.Q. Sun, Base-hydration-resolved hydrogen-bond networking dynamics: quantum point compression. J. Mol. Liq. 223, 1277–1283 (2016)

    Article  CAS  Google Scholar 

  20. R.A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, 1991)

    Google Scholar 

  21. Y. Huang, X. Zhang, Z. Ma, Y. Zhou, G. Zhou, C.Q. Sun, Hydrogen-bond asymmetric local potentials in compressed ice. J. Phys. Chem. B 117(43), 13639–13645 (2013)

    Article  CAS  PubMed  Google Scholar 

  22. Y.L. Huang, X. Zhang, Z.S. Ma, G.H. Zhou, Y.Y. Gong, C.Q. Sun, Potential paths for the hydrogen-bond relaxing with (H2O)(N) cluster size. J. Phys. Chem. C 119(29), 16962–16971 (2015)

    Article  CAS  Google Scholar 

  23. X. Zhang, P. Sun, Y. Huang, T. Yan, Z. Ma, X. Liu, B. Zou, J. Zhou, W. Zheng, C.Q. Sun, Water’s phase diagram: from the notion of thermodynamics to hydrogen-bond cooperativity. Prog. Solid State Chem. 43, 71–81 (2015)

    Article  CAS  Google Scholar 

  24. C.Q. Sun, J. Chen, Y. Gong, X. Zhang, Y. Huang, (H, Li)Br and LiOH solvation bonding dynamics: molecular nonbond interactions and solute extraordinary capabilities. J. Phys. Chem. B 122(3), 1228–1238 (2018)

    Article  CAS  PubMed  Google Scholar 

  25. Y. Wang, H. Liu, J. Lv, L. Zhu, H. Wang, Y. Ma, High pressure partially ionic phase of water ice. Nat. Commun. 2, 563 (2011)

    Article  PubMed  CAS  Google Scholar 

  26. C.Q. Sun, X. Zhang, W.T. Zheng, Hidden force opposing ice compression. Chem. Sci. 3, 1455–1460 (2012)

    Article  CAS  Google Scholar 

  27. N. Bjerrum, Structure and properties of ice. Nat. 115(2989), 385–390 (1952)

    Article  CAS  PubMed  Google Scholar 

  28. M.d. Koning, A.l. Antonelli, A.J.R.d. Silva, and A. Fazzio, Orientational defects in ice Ih: an interpretation of electrical conductivity measurements. Phys. Rev. Lett. 96(075501) (2006)

    Google Scholar 

  29. M. Millot, F. Coppari, J.R. Rygg, A. Correa Barrios, S. Hamel, D.C. Swift, and J.H. Eggert, Nanosecond X-ray diffraction of shock-compressed superionic water ice. Nat. 569(7755), 251–255 (2019)

    Article  CAS  PubMed  Google Scholar 

  30. C.Q. Sun, X. Zhang, J. Zhou, Y. Huang, Y. Zhou, W. Zheng, Density, elasticity, and stability anomalies of water molecules with fewer than four neighbors. J. Phys. Chem. Lett. 4, 2565–2570 (2013)

    Article  CAS  PubMed  Google Scholar 

  31. K.R. Wilson, R.D. Schaller, D.T. Co, R.J. Saykally, B.S. Rude, T. Catalano, J.D. Bozek, Surface relaxation in liquid water and methanol studied by x-ray absorption spectroscopy. J. Chem. Phys. 117(16), 7738–7744 (2002)

    Article  CAS  Google Scholar 

  32. F. Mallamace, C. Branca, M. Broccio, C. Corsaro, C.Y. Mou, S.H. Chen, The anomalous behavior of the density of water in the range 30 K < T < 373 K. Proc. Natl. Acad. Sci. U.S.A. 104(47), 18387–18391 (2007)

    Article  CAS  Google Scholar 

  33. C.Q. Sun, X. Zhang, X. Fu, W. Zheng, J.-L. Kuo, Y. Zhou, Z. Shen, J. Zhou, Density and phonon-stiffness anomalies of water and ice in the full temperature range. J. Phys. Chem. Lett. 4, 3238–3244 (2013)

    Article  CAS  PubMed  Google Scholar 

  34. J. Harms, J.P. Toennies, F. Dalfovo, Density of superfluid helium droplets. Phys. Rev. B 58(6), 3341 (1998)

    Article  CAS  Google Scholar 

  35. J. Day, J. Beamish, Low-temperature shear modulus changes in solid He-4 and connection to supersolidity. Nature 450(7171), 853–856 (2007)

    Article  CAS  PubMed  Google Scholar 

  36. C.Q. Sun, Size dependence of nanostructures: Impact of bond order deficiency. Prog. Solid State Chem. 35(1), 1–159 (2007)

    Article  CAS  Google Scholar 

  37. X. Zhang, Y. Huang, Z. Ma, Y. Zhou, W. Zheng, J. Zhou, C.Q. Sun, A common supersolid skin covering both water and ice. Phys. Chem. Chem. Phys. 16(42), 22987–22994 (2014)

    Article  CAS  PubMed  Google Scholar 

  38. C. Medcraft, D. McNaughton, C.D. Thompson, D.R.T. Appadoo, S. Bauerecker, E.G. Robertson, Water ice nanoparticles: size and temperature effects on the mid-infrared spectrum. Phys. Chem. Chem. Phys. 15(10), 3630–3639 (2013)

    Article  CAS  PubMed  Google Scholar 

  39. C. Medcraft, D. McNaughton, C.D. Thompson, D. Appadoo, S. Bauerecker, E.G. Robertson, Size and temperature dependence in the far-Ir spectra of water ice particles. Astrophys. J. 758(1), 17 (2012)

    Article  Google Scholar 

  40. X. Zhang, Y. Huang, P. Sun, X. Liu, Z. Ma, Y. Zhou, J. Zhou, W. Zheng, C.Q. Sun, Ice regelation: hydrogen-bond extraordinary recoverability and water quasisolid-phase-boundary dispersivity. Sci. Rep. 5, 13655 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  41. X. Zhang, Y. Huang, Z. Ma, Y. Zhou, J. Zhou, W. Zheng, Q. Jiang, C.Q. Sun, Hydrogen-bond memory and water-skin supersolidity resolving the Mpemba paradox. Phys. Chem. Chem. Phys. 16(42), 22995–23002 (2014)

    Article  CAS  PubMed  Google Scholar 

  42. H. Sun, COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B 102(38), 7338–7364 (1998)

    Article  CAS  Google Scholar 

  43. K. Sotthewes, P. Bampoulis, H.J. Zandvliet, D. Lohse, B. Poelsema, Pressure induced melting of confined ice. ACS Nano 11(12), 12723–12731 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. H. Qiu, W. Guo, Electromelting of confined monolayer ice. Phys. Rev. Lett. 110(19), 195701 (2013)

    Article  PubMed  CAS  Google Scholar 

  45. R. Moro, R. Rabinovitch, C. Xia, V.V. Kresin, Electric dipole moments of water clusters from a beam deflection measurement. Phys. Rev. Lett. 97(12), 123401 (2006)

    Article  PubMed  CAS  Google Scholar 

  46. F.G. Alabarse, J. Haines, O. Cambon, C. Levelut, D. Bourgogne, A. Haidoux, D. Granier, B. Coasne, Freezing of water confined at the nanoscale. Phys. Rev. Lett. 109(3), 035701 (2012)

    Article  CAS  PubMed  Google Scholar 

  47. B. Wang, W. Jiang, Y. Gao, B.K. Teo, Z. Wang, Chirality recognition in concerted proton transfer process for prismatic water clusters. Nano Res. 9(9), 2782–2795 (2016)

    Article  CAS  Google Scholar 

  48. H. Bhatt, A.K. Mishra, C. Murli, A.K. Verma, N. Garg, M.N. Deo, S.M. Sharma, Proton transfer aiding phase transitions in oxalic acid dihydrate under pressure. Phys. Chem. Chem. Phys. 18(11), 8065–8074 (2016)

    Article  CAS  PubMed  Google Scholar 

  49. H. Bhatt, C. Murli, A.K. Mishra, A.K. Verma, N. Garg, M.N. Deo, R. Chitra, S.M. Sharma, Hydrogen bond symmetrization in glycinium oxalate under pressure. J. Phys. Chem. B 120(4), 851–859 (2016)

    Article  CAS  PubMed  Google Scholar 

  50. Q. Zeng, T. Yan, K. Wang, Y. Gong, Y. Zhou, Y. Huang, C.Q. Sun, B. Zou, Compression icing of room-temperature NaX solutions (X = F, Cl, Br, I). Phys. Chem. Chem. Phys. 18(20), 14046–14054 (2016)

    Article  CAS  PubMed  Google Scholar 

  51. Q. Zeng, C. Yao, K. Wang, C.Q. Sun, B. Zou, Room-temperature NaI/H2O compression icing: solute–solute interactions. PCCP 19, 26645–26650 (2017)

    Article  CAS  PubMed  Google Scholar 

  52. D. Kang, J. Dai, H. Sun, Y. Hou, J. Yuan, Quantum simulation of thermally-driven phase transition and oxygen K-edge x-ray absorption of high-pressure ice 3, (2013). http://www.naturecom/srep/2013/131021/srep03005/metrics

  53. K. Dong, S. Zhang, Q. Wang, A new class of ion-ion interaction: Z-bond. Sci. China Chem. 58(3), 495–500 (2015)

    Article  CAS  Google Scholar 

  54. F. Li, Z. Men, S. Li, S. Wang, Z. Li, C. Sun, Study of hydrogen bonding in ethanol-water binary solutions by Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 189, 621–624 (2018)

    Article  CAS  Google Scholar 

  55. F.B. Li, Z.L. Li, S.H. Wang, S. Li, Z.W. Men, S.L. Ouyang, C.L. Sun, Structure of water molecules from Raman measurements of cooling different concentrations of NaOH solutions. Spectrochimica Acta Part a-Mol. Biomol. Spectrosc. 183, 425–430 (2017)

    Article  CAS  Google Scholar 

  56. J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation-energy. Phys. Rev. B 45(23), 13244–13249 (1992)

    Article  CAS  Google Scholar 

  57. F. Ortmann, F. Bechstedt, W.G. Schmidt, Semiempirical van der Waals correction to the density functional description of solids and molecular structures. Phys. Rev. B 73(20), 205101 (2006)

    Article  CAS  Google Scholar 

  58. Y. Yoshimura, S.T. Stewart, M. Somayazulu, H. Mao, R.J. Hemley, High-pressure X-ray diffraction and Raman spectroscopy of ice VIII. J. Chem. Phys. 124(2), 024502 (2006)

    Article  PubMed  CAS  Google Scholar 

  59. M. Erko, D. Wallacher, A. Hoell, T. Hauss, I. Zizak, O. Paris, Density minimum of confined water at low temperatures: a combined study by small-angle scattering of X-rays and neutrons. PCCP 14(11), 3852–3858 (2012)

    Article  CAS  PubMed  Google Scholar 

  60. K. Liu, J.D. Cruzan, R.J. Saykally, Water clusters. Science 271(5251), 929–933 (1996)

    Article  CAS  Google Scholar 

  61. U. Bergmann, A. Di Cicco, P. Wernet, E. Principi, P. Glatzel, A. Nilsson, Nearest-neighbor oxygen distances in liquid water and ice observed by X-ray Raman based extended X-ray absorption fine structure. J. Chem. Phys. 127(17), 174504 (2007)

    Article  PubMed  CAS  Google Scholar 

  62. K.R. Wilson, B.S. Rude, T. Catalano, R.D. Schaller, J.G. Tobin, D.T. Co, R.J. Saykally, X-ray spectroscopy of liquid water microjets. J. Phys. Chem. B 105(17), 3346–3349 (2001)

    Article  CAS  Google Scholar 

  63. A. Narten, W. Thiessen, L. Blum, Atom pair distribution functions of liquid water at 25 °C from neutron diffraction. Science 217(4564), 1033–1034 (1982)

    Article  CAS  PubMed  Google Scholar 

  64. L. Fu, A. Bienenstock, S. Brennan, X-ray study of the structure of liquid water. J. Chem. Phys. 131(23), 234702 (2009)

    Article  PubMed  CAS  Google Scholar 

  65. J.-L. Kuo, M.L. Klein, W.F. Kuhs, The effect of proton disorder on the structure of ice-Ih: a theoretical study. J. Chem. Phys. 123(13), 134505 (2005)

    Article  PubMed  CAS  Google Scholar 

  66. A. Soper, Joint structure refinement of X-ray and neutron diffraction data on disordered materials: application to liquid water. J. Phys.: Condens. Matter 19(33), 335206 (2007)

    CAS  Google Scholar 

  67. L.B. Skinner, C. Huang, D. Schlesinger, L.G. Pettersson, A. Nilsson, C.J. Benmore, Benchmark oxygen-oxygen pair-distribution function of ambient water from X-ray diffraction measurements with a wide Q-range. J. Chem. Phys. 138(7), 074506 (2013)

    Article  PubMed  CAS  Google Scholar 

  68. K.T. Wikfeldt, M. Leetmaa, A. Mace, A. Nilsson, L.G.M. Pettersson, Oxygen-oxygen correlations in liquid water: addressing the discrepancy between diffraction and extended x-ray absorption fine-structure using a novel multiple-data set fitting technique. J. Chem. Phys. 132(10), 104513 (2010)

    Article  PubMed  CAS  Google Scholar 

  69. X. Zhang, S. Chen, J. Li, Hydrogen-bond potential for ice VIII-X phase transition. Sci. Rep. 6, 37161 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. T.F. Kahan, J.P. Reid, D.J. Donaldson, Spectroscopic probes of the quasi-liquid layer on ice. J. Phys. Chem. A 111(43), 11006–11012 (2007)

    Article  CAS  PubMed  Google Scholar 

  71. M.X. Gu, C.Q. Sun, Z. Chen, T.C.A. Yeung, S. Li, C.M. Tan, V. Nosik, Size, temperature, and bond nature dependence of elasticity and its derivatives on extensibility, Debye temperature, and heat capacity of nanostructures. Phys. Rev. B 75(12), 125403 (2007)

    Article  CAS  Google Scholar 

  72. F. Perakis, K. Amann-Winkel, F. Lehmkühler, M. Sprung, D. Mariedahl, J.A. Sellberg, H. Pathak, A. Späh, F. Cavalca, D. Schlesinger, A. Ricci, A. Jain, B. Massani, F. Aubree, C.J. Benmore, T. Loerting, G. Grübel, L.G.M. Pettersson, A. Nilsson, Diffusive dynamics during the high-to-low density transition in amorphous ice. Proc. Natl. Acad. Sci. 114(31), 8193–8198 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. J.A. Sellberg, C. Huang, T.A. McQueen, N.D. Loh, H. Laksmono, D. Schlesinger, R.G. Sierra, D. Nordlund, C.Y. Hampton, D. Starodub, D.P. DePonte, M. Beye, C. Chen, A.V. Martin, A. Barty, K.T. Wikfeldt, T.M. Weiss, C. Caronna, J. Feldkamp, L.B. Skinner, M.M. Seibert, M. Messerschmidt, G.J. Williams, S. Boutet, L.G. Pettersson, M.J. Bogan, A. Nilsson, Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature. Nature 510(7505), 381–384 (2014)

    Article  CAS  PubMed  Google Scholar 

  74. Y.R. Shen, V. Ostroverkhov, Sum-frequency vibrational spectroscopy on water interfaces: polar orientation of water molecules at interfaces. Chem. Rev. 106(4), 1140–1154 (2006)

    Article  CAS  PubMed  Google Scholar 

  75. F. Mallamace, M. Broccio, C. Corsaro, A. Faraone, D. Majolino, V. Venuti, L. Liu, C.Y. Mou, S.H. Chen, Evidence of the existence of the low-density liquid phase in supercooled, confined water. Proc. Natl. Acad. Sci. U.S.A. 104(2), 424–428 (2007)

    Article  CAS  PubMed  Google Scholar 

  76. B. Wang, W. Jiang, Y. Gao, Z. Zhang, C. Sun, F. Liu, Z. Wang, Energetics competition in centrally four-coordinated water clusters and Raman spectroscopic signature for hydrogen bonding. RSC Adv. 7(19), 11680–11683 (2017)

    Article  CAS  Google Scholar 

  77. Y. Shi, Z. Zhang, W. Jiang, Z. Wang, Theoretical study on electronic and vibrational properties of hydrogen bonds in glycine-water clusters. Chem. Phys. Lett. 684, 53–59 (2017)

    Article  CAS  Google Scholar 

  78. Y. Otsuki, T. Sugimoto, T. Ishiyama, A. Morita, K. Watanabe, Y. Matsumoto, Unveiling subsurface hydrogen-bond structure of hexagonal water ice. Phys. Rev. B 96(11), 115405 (2017)

    Article  Google Scholar 

  79. Y. Liu, J. Wu, Communication: long-range angular correlations in liquid water. J. Chem. Phys. 139(4), 041103 (2013)

    Article  PubMed  CAS  Google Scholar 

  80. X.Z. Li, B. Walker, A. Michaelides, Quantum nature of the hydrogen bond. Proc. Natl. Acad. Sci. U.S.A. 108(16), 6369–6373 (2011)

    Article  CAS  PubMed Central  Google Scholar 

  81. R.F. McGuire, F.A. Momany, H.A. Scheraga, Energy parameters in polypeptides. V. An empirical hydrogen bond potential function based on molecular orbital calculations. J. Phys. Chem. 76, 375–393 (1972)

    Article  CAS  PubMed  Google Scholar 

  82. N. Kumagai, K. Kawamura, T. Yokokawa, An interatomic potential model for H2O: applications to water and ice polymorphs. Mol. Simul. 12, 177–186 (1994)

    Article  CAS  Google Scholar 

  83. J. Sun, G. Niehues, H. Forbert, D. Decka, G. Schwaab, D. Marx, M. Havenith, Understanding THz spectra of aqueous solutions: glycine in light and heavy water. J. Am. Chem. Soc. 136(13), 5031–5038 (2014)

    Article  CAS  PubMed  Google Scholar 

  84. K. Tielrooij, S. Van Der Post, J. Hunger, M. Bonn, H. Bakker, Anisotropic water reorientation around ions. J. Phys. Chem. B 115(43), 12638–12647 (2011)

    Article  CAS  PubMed  Google Scholar 

  85. Y. Zhou, Yuan Zhong, X. Liu, Y. Huang, X. Zhang, C.Q. Sun, NaX solvation bonding dynamics: hydrogen bond and surface stress transition (X = HSO4, NO3, ClO4, SCN). J. Mol. Liq. 248(432–438) (2017)

    Article  CAS  Google Scholar 

  86. Y. Zhou, Y. Gong, Y. Huang, Z. Ma, X. Zhang, C.Q. Sun, Fraction and stiffness transition from the H–O vibrational mode of ordinary water to the HI, NaI, and NaOH hydration states. J. Mol. Liq. 244, 415–421 (2017)

    Article  CAS  Google Scholar 

  87. X. Zhang, Y. Xu, Y. Zhou, Y. Gong, Y. Huang, C.Q. Sun, HCl, KCl and KOH solvation resolved solute-solvent interactions and solution surface stress. Appl. Surf. Sci. 422: 475–481 (2017)

    Article  CAS  Google Scholar 

  88. G.C. Pimentel, A.L. McClellan, The Hydrogen Bond (ed. W.H. Freeman. San Francisco, CA, 1960), p. 475

    Google Scholar 

  89. L. Pauling, The Nature of the Chemical Bond. 3 edn. (Cornell University Press, Ithaca, NY 1960)

    Google Scholar 

  90. P. Banerjee, T. Chakraborty, Weak hydrogen bonds: insights from vibrational spectroscopic studies. Int. Rev. Phys. Chem. 37(1), 83–123 (2018)

    Article  CAS  Google Scholar 

  91. G.R. Desiraju, T. Steiner, The weak hydrogen bond: in structural chemistry and biology. Vol. 9. 2001: Oxford university press

    Google Scholar 

  92. P.A. Kollman, L.C. Allen, Theory of the hydrogen bond. Chem. Rev. 72(3), 283–303 (1972)

    Article  CAS  Google Scholar 

  93. E. Arunan, G.R. Desiraju, R.A. Klein, J. Sadlej, S. Scheiner, I. Alkorta, D.C. Clary, R.H. Crabtree, J.J. Dannenberg, P. Hobza, H.G. Kjaergaard, A.C. Legon, B. Mennucci, D.J. Nesbitt, Definition of the hydrogen bond (IUPAC recommendations 2011). Pure Appl. Chem. 83(8), 1637–1641 (2011)

    Article  CAS  Google Scholar 

  94. M.F. Perutz, The role of aromatic rings as hydrogen-bond acceptors in molecular recognition. Phil. Trans. R. Soc. Lond. A 345(1674), 105–112 (1993)

    Article  CAS  Google Scholar 

  95. G. Gilli, P. Gilli, The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory, vol. 23 (Oxford University Press, 2009)

    Google Scholar 

  96. E.A. Meyer, R.K. Castellano, F. Diederich, Interactions with aromatic rings in chemical and biological recognition. Angew. Chem. Int. Ed. 42(11), 1210–1250 (2003)

    Article  CAS  Google Scholar 

  97. J.L. Atwood, F. Hamada, K.D. Robinson, G.W. Orr, R.L. Vincent, X-ray diffraction evidence for aromatic π hydrogen bonding to water. Nature 349(6311), 683 (1991)

    Article  CAS  Google Scholar 

  98. W. Saenger, G. Jeffrey, Hydrogen Bonding in Biological Structures (Springer, Berlin, 1991)

    Google Scholar 

  99. O. Takahashi, Y. Kohno, M. Nishio, Relevance of weak hydrogen bonds in the conformation of organic compounds and bioconjugates: evidence from recent experimental data and high-level ab initio MO calculations. Chem. Rev. 110(10), 6049–6076 (2010)

    Article  CAS  PubMed  Google Scholar 

  100. C.Q. Sun, Aqueous charge injection: solvation bonding dynamics, molecular nonbond interactions, and extraordinary solute capabilities. Int. Rev. Phys. Chem. 37(3–4), 363–558 (2018)

    Article  CAS  Google Scholar 

  101. D. Marx, M.E. Tuckerman, J. Hutter, M. Parrinello, The nature of the hydrated excess proton in water. Nature 397(6720), 601–604 (1999)

    Article  CAS  Google Scholar 

  102. Y. Gong, Y. Zhou, H. Wu, D. Wu, Y. Huang, C.Q. Sun, Raman spectroscopy of alkali halide hydration: hydrogen bond relaxation and polarization. J. Raman Spectrosc. 47(11), 1351–1359 (2016)

    Article  CAS  Google Scholar 

  103. P. Cotterill, The hydrogen embrittlement of metals. Prog. Mater Sci. 9(4), 205–301 (1961)

    Article  CAS  Google Scholar 

  104. D. Hollas, O. Svoboda, P. Slavíček, Fragmentation of HCl–water clusters upon ionization: non-adiabatic ab initio dynamics study. Chem. Phys. Lett. 622, 80–85 (2015)

    Article  CAS  Google Scholar 

  105. J. Chen, C. Yao, X. Liu, X. Zhang, C.Q. Sun, Y. Huang, H2O2 and HO- solvation dynamics: solute capabilities and solute-solvent molecular interactions. Chem. Sel. 2(27), 8517–8523 (2017)

    CAS  Google Scholar 

  106. Y.Q. Fu, B. Yan, N.L. Loh, C.Q. Sun, P. Hing, Hydrogen embrittlement of titanium during microwave plasma assisted CVD diamond deposition. Surf. Eng. 16(4), 349–354 (2000)

    Article  CAS  Google Scholar 

  107. S. Huang, D. Chen, J. Song, D.L. McDowell, T. Zhu, Hydrogen embrittlement of grain boundaries in nickel: an atomistic study. NPJ Comput. Mater. 3, 1 (2017)

    Article  CAS  Google Scholar 

  108. L.J. Bartolotti, D. Rai, A.D. Kulkarni, S.P. Gejji, R.K. Pathak, Water clusters (H2O)n [n = 9 − 20] in external electric fields: exotic OH stretching frequencies near breakdown. Comput. Theor. Chem. 1044, 66–73 (2014)

    Article  CAS  Google Scholar 

  109. V.M. Goldschmidt, Crystal structure and chemical correlation. Ber. Dtsch. Chem. Ges. 60, 1263–1296 (1927)

    Article  Google Scholar 

  110. M. Druchok, M. Holovko, Structural changes in water exposed to electric fields: a molecular dynamics study. J. Mol. Liq. 212, 969–975 (2015)

    Article  CAS  Google Scholar 

  111. Y. Zhou, Y. Huang, Z. Ma, Y. Gong, X. Zhang, Y. Sun, C.Q. Sun, Water molecular structure-order in the NaX hydration shells (X = F, Cl, Br, I). J. Mol. Liq. 221, 788–797 (2016)

    Article  CAS  Google Scholar 

  112. X. Zhang, T. Yan, Y. Huang, Z. Ma, X. Liu, B. Zou, C.Q. Sun, Mediating relaxation and polarization of hydrogen-bonds in water by NaCl salting and heating. Phys. Chem. Chem. Phys. 16(45), 24666–24671 (2014)

    Article  CAS  PubMed  Google Scholar 

  113. A.W. Omta, M.F. Kropman, S. Woutersen, H.J. Bakker, Negligible effect of ions on the hydrogen-bond structure in liquid water. Science 301(5631), 347–349 (2003)

    Article  CAS  PubMed  Google Scholar 

  114. K. Tielrooij, N. Garcia-Araez, M. Bonn, H. Bakker, Cooperativity in ion hydration. Science 328(5981), 1006–1009 (2010)

    Article  CAS  PubMed  Google Scholar 

  115. M.R. Rahimpour, M.R. Dehnavi, F. Allahgholipour, D. Iranshahi, S.M. Jokar, Assessment and comparison of different catalytic coupling exothermic and endothermic reactions: a review. Appl. Energy 99, 496–512 (2012)

    Article  CAS  Google Scholar 

  116. R.C. Ramaswamy, P.A. Ramachandran, M.P. Duduković, Coupling exothermic and endothermic reactions in adiabatic reactors. Chem. Eng. Sci. 63(6), 1654–1667 (2008)

    Article  CAS  Google Scholar 

  117. N. Shahrin, Solubility and dissolution of drug product: a review. Int. J. Pharm. Life Sci. 2(1), 33–41 (2013)

    Article  Google Scholar 

  118. K. Haldrup, W. Gawelda, R. Abela, R. Alonso-Mori, U. Bergmann, A. Bordage, M. Cammarata, S.E. Canton, A.O. Dohn, T.B. Van Driel, Observing solvation dynamics with simultaneous femtosecond X-ray emission spectroscopy and X-ray scattering. J. Phys. Chem. B 120(6), 1158–1168 (2016)

    Article  CAS  PubMed  Google Scholar 

  119. J.B. Rosenholm, Critical evaluation of dipolar, acid-base and charge interactions I. Electron displacement within and between molecules, liquids and semiconductors. Adv. Colloid Interface Sci. 247, 264–304

    Article  CAS  PubMed  Google Scholar 

  120. J. Konicek, I. Wadsö, Thermochemical properties of some carboxylic acids, amines and N-substituted amides in aqueous solution. Acta Chem. Scand 25(5), 1461–1551 (1971)

    Article  CAS  Google Scholar 

  121. E.L. Ratkova, D.S. Palmer, M.V. Fedorov, Solvation thermodynamics of organic molecules by the molecular integral equation theory: approaching chemical accuracy. Chem. Rev. 115(13), 6312–6356 (2015)

    Article  CAS  PubMed  Google Scholar 

  122. G. G., Hydration thermodynamics of aliphatic alcohols. PCCP, 1(15): 3567–3576, (1999)

    Google Scholar 

  123. A.M. Ricks, A.D. Brathwaite, M.A. Duncan, IR spectroscopy of gas phase V(CO2)n+ clusters: solvation-induced electron transfer and activation of CO2. J. Phys. Chem. A 117(45), 11490–11498 (2013)

    Article  CAS  PubMed  Google Scholar 

  124. M. Wohlgemuth, M. Miyazaki, M. Weiler, M. Sakai, O. Dopfer, M. Fujii, R. Mitrić, Solvation dynamics of a single water molecule probed by infrared spectra–theory meets experiment. Angew. Chem. Int. Ed. 53(52), 14601–14604 (2014)

    Article  CAS  Google Scholar 

  125. C. Velezvega, D.J. Mckay, T. Kurtzman, V. Aravamuthan, R.A. Pearlstein, J.S. Duca, Estimation of solvation entropy and enthalpy via analysis of water oxygen-hydrogen correlations. J. Chem. Theory Comput. 11(11), 5090 (2015)

    Article  CAS  Google Scholar 

  126. A. Zaichikov, M.A. Krest’yaninov, Structural and thermodynamic properties and intermolecular interactions in aqueous and acetonitrile solutions of aprotic amides. J. Struct. Chem. 54(2), 336–344 (2013)

    Article  CAS  Google Scholar 

  127. A. Magno, P. Gallo, Understanding the mechanisms of bioprotection: a comparative study of aqueous solutions of trehalose and maltose upon supercooling. J. Phys. Chem. Lett. 2(9), 977–982 (2011)

    Article  CAS  Google Scholar 

  128. K. Liu, C. Wang, J. Ma, G. Shi, X. Yao, H. Fang, Y. Song, J. Wang, Janus effect of antifreeze proteins on ice nucleation. Proc. Natl. Acad. Sci. U.S.A. 113(51), 14739–14744 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. X. Zhang, P. Sun, Y. Huang, Z. Ma, X. Liu, J. Zhou, W. Zheng, C.Q. Sun, Water nanodroplet thermodynamics: quasi-solid phase-boundary dispersivity. J. Phys. Chem. B 119(16), 5265–5269 (2015)

    Article  CAS  PubMed  Google Scholar 

  130. F. Jensen, F. Besenbacher, E. Laegsgaard, I. Stensgaard, Dynamics of oxygen-induced reconstruction of Cu(100) studied by scanning tunneling microscopy. Phys. Rev. B 42(14), 9206–9209 (1990)

    Article  CAS  Google Scholar 

  131. C.Q. Sun, O–Cu(001): II. VLEED quantification of the four-stage Cu3O2 bonding kinetics. Surf. Rev. Lett. 8(6), 703–734 (2001)

    Google Scholar 

  132. J.R. Mercer, P. Finetti, F.M. Leibsle, R. McGrath, V.R. Dhanak, A. Baraldi, K.C. Prince, R. Rosei, STM and SPA-LEED studies of O-induced structures on Rh(100) surfaces. Surf. Sci. 352, 173–178 (1996)

    Article  CAS  Google Scholar 

  133. C.Q. Sun, Electronic process of Cu(Ag, V, Rh)(001) surface oxidation: atomic valence evolution and bonding kinetics. Appl. Surf. Sci. 246(1–3), 6–13 (2005)

    Article  CAS  Google Scholar 

  134. Q.S. Chang, H. Xie, W. Zhang, H. Ye, P. Hing, Preferential oxidation of diamond {111}. J. Phys. D Appl. Phys. 33(17), 2196 (2000)

    Article  Google Scholar 

  135. H. Wolter, K. Meinel, C. Ammer, K. Wandelt, H. Neddermeyer, O-mediated layer growth of Cu on Ru (0001). J. Phys.: Condens. Matter 11(1), 19 (1999)

    CAS  Google Scholar 

  136. K. Meinel, C. Ammer, M. Mitte, H. Wolter, H. Neddermeyer, Effects and structures of the O/Cu surfactant layer in O-mediated film growth of Cu on Ru (0 0 0 1). Prog. Surf. Sci. 67(1–8), 183–203 (2001)

    Article  CAS  Google Scholar 

  137. M. Schmidt, H. Wolter, M. Schick, K. Kalki, K. Wandelt, Compression phases in copper/oxygen coadsorption layers on a Ru (0001) surface. Surf. Sci. 287, 983–987 (1993)

    Article  Google Scholar 

  138. M. Schmidt, H. Wolter, K. Wandelt, Work-function oscillations during the surfactant induced layer-by-layer growth of copper on oxygen precovered Ru (0001). Surf. Sci. 307, 507–513 (1994)

    Article  Google Scholar 

  139. M. Karolewski, Determination of growth modes of Cu on O/Ni (1 0 0) and NiO (1 0 0) surfaces by SIMS and secondary electron emission measurements. Surf. Sci. 517(1–3), 138–150 (2002)

    Article  CAS  Google Scholar 

  140. W. Wulfhekel, N.N. Lipkin, J. Kliewer, G. Rosenfeld, L.C. Jorritsma, B. Poelsema, G. Comsa, Conventional and manipulated growth of Cu/Cu (111). Surf. Sci. 348(3), 227–242 (1996)

    Article  CAS  Google Scholar 

  141. M. Yata, H. Rouch, K. Nakamura, Kinetics of oxygen surfactant in Cu (001) homoepitaxial growth. Phys. Rev. B 56(16), 10579 (1997)

    Article  CAS  Google Scholar 

  142. J. Whitten, R. Gomer, Reactivity of Ni on oxygen-covered W (110) surfaces. J. Vac. Sci. Technol. A: Vac., Surf., Films 13(5), 2540–2546 (1995)

    Article  CAS  Google Scholar 

  143. C. Sun, Time-resolved VLEED from the O-Cu (001): atomic processes of oxidation. Vacuum 48(6), 525–530 (1997)

    Article  CAS  Google Scholar 

  144. J.W. Frenken, J. Van der Veen, G. Allan, Relation between surface relaxation and surface force constants in clean and oxygen-covered Ni (001). Phys. Rev. Lett. 51(20), 1876 (1983)

    Article  CAS  Google Scholar 

  145. J. Peng, D. Cao, Z. He, J. Guo, P. Hapala, R. Ma, B. Cheng, J. Chen, W.J. Xie, X.-Z. Li, P. Jelínek, L.-M. Xu, Y.Q. Gao, E.-G. Wang, Y. Jiang, The effect of hydration number on the interfacial transport of sodium ions. Nature 557, 701–705 (2018)

    Article  CAS  PubMed  Google Scholar 

  146. M.A. Omar, Elementary Solid State Physics: Principles and Applications (Addison-Wesley, New York, 1993)

    Google Scholar 

  147. A. Bragg, J. Verlet, A. Kammrath, O. Cheshnovsky, D. Neumark, Hydrated electron dynamics: from clusters to bulk. Science 306(5696), 669–671 (2004)

    Article  CAS  PubMed  Google Scholar 

  148. A.E. Bragg, J.R.R. Verlet, A. Kammrath, O. Cheshnovsky, D.M. Neumark, Electronic relaxation dynamics of water cluster anions. J. Am. Chem. Soc. 127(43), 15283–15295 (2005)

    Article  CAS  PubMed  Google Scholar 

  149. A. Kammrath, J.R. Verlet, A.E. Bragg, G.B. Griffin, D.M. Neumark, Dynamics of charge-transfer-to-solvent precursor states in I-(water) n (n = 3–10) clusters studied with photoelectron imaging. The J. Phys. Chem. A 109(50), 11475–11483 (2005)

    Article  CAS  PubMed  Google Scholar 

  150. A. Kammrath, G. Griffin, D. Neumark, J.R.R. Verlet, Photoelectron spectroscopy of large (water)[sub n][sup −] (n = 50–200) clusters at 4.7 eV. The J. Chem. Phys. 125(7), 076101 (2006)

    Google Scholar 

  151. D. Sagar, C.D. Bain, J.R. Verlet, Hydrated electrons at the water/air interface. J. Am. Chem. Soc. 132(20), 6917–6919 (2010)

    Article  CAS  PubMed  Google Scholar 

  152. J. Verlet, A. Bragg, A. Kammrath, O. Cheshnovsky, D. Neumark, Observation of large water-cluster anions with surface-bound excess electrons. Science 307(5706), 93–96 (2005)

    Article  CAS  PubMed  Google Scholar 

  153. X.J. Liu, M.L. Bo, X. Zhang, L. Li, Y.G. Nie, H. TIan, Y. Sun, S. Xu, Y. Wang, W. Zheng, C.Q. Sun, Coordination-resolved electron spectrometrics. Chem. rev. 115(14), 6746–6810 (2015)

    Article  CAS  PubMed  Google Scholar 

  154. C.Q. Sun, Atomic scale purification of electron spectroscopic information (US 2017 patent No. 9,625,397B2). 2017: United States

    Google Scholar 

  155. Y. Gong, Y. Zhou, C. Sun, Phonon Spectrometrics of the Hydrogen Bond (O:H–O) Segmental Length and Energy Relaxation Under Excitation (B.o. Intelligence, Editor., China, 2018)

    Google Scholar 

  156. A. Mailleur, C. Pirat, O. Pierre-Louis, J. Colombani, Hollow Rims from water drop evaporation on salt substrates. Phys. Rev. Lett. 121, 124501 (2018)

    Article  Google Scholar 

  157. R. Deegan, O. Bakajin, T. Dupont, G. Huber, T.W.S. Nagel, Capillary flow as the cause of ring stains from dried liquid drops. Nat. (Lond.) 389, 827 (1997)

    Article  CAS  Google Scholar 

  158. P. Sáenz, A. Wray, Z. Che, O. Matar, P. Valluri, J. Kim, K. Sefiane, Dynamics and universal scaling law in geometrically-controlled sessile drop evaporation. Nat. Commun. 8, 14783 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. N. Shahidzadeh-Bonn, S. Rafaï, D. Bonn, G. Wegdam, Salt crystallization during evaporation: impact of interfacial properties. Langmuir 24, 8599 (2008)

    Article  CAS  PubMed  Google Scholar 

  160. N. Shahidzadeh, M. Schut, J. Desarnaud, M. Prat, D. Bonn, Salt stains from evaporating droplets. Sci. Rep. 5, 10335 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  161. A. Tay, D. Bendejacq, C. Monteux, F. Lequeux, How does water wet a hydrosoluble substrate? Soft Matter 7, 6953 (2011)

    Article  CAS  Google Scholar 

  162. J. Dupas, E. Verneuil, M. Ramaioli, L. Forny, L. Talini, F. Lequeux, Dynamic wetting on a thin film of soluble polymer: effects of nonlinearities in the sorption isotherm. Langmuir 29, 12572 (2013)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, C.Q. (2019). Theory: Aqueous Charge Injection by Solvation. In: Solvation Dynamics. Springer Series in Chemical Physics, vol 121. Springer, Singapore. https://doi.org/10.1007/978-981-13-8441-7_3

Download citation

Publish with us

Policies and ethics