Skip to main content

Differential Phonon Spectrometrics (DPS)

  • Chapter
  • First Online:
Solvation Dynamics

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 121))

  • 381 Accesses

Abstract

An incorporation of the hydrogen bond cooperativity theory to the DPS strategy and surface stress (contact angle) detection could resolve the solvation bonding and nonbonding dynamics and solute capabilities. The enabled information includes bond length and stiffness transition, electron polarization, and the fraction of bonds transformed from the mode of ordinary water to the hydration shells. A combination of the DPS and the ultrafast IR spectroscopy would be more revealing towards solute-solvent and solute-solute molecular interactions, solute capabilities, and solution properties. The DPS is focused on the solvation O:H–O segmental cooperative bonding dynamics and the ultrafast IR on molecular motion dynamics by measuring phonon relaxation time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.M. Johnson, S. Baldelli, Vibrational sum frequency spectroscopy studies of the influence of solutes and phospholipids at vapor/water interfaces relevant to biological and environmental systems. Chem. Rev. 114(17), 8416–8446 (2014)

    Article  CAS  Google Scholar 

  2. M. Thämer, L. De Marco, K. Ramasesha, A. Mandal, A. Tokmakoff, Ultrafast 2D IR spectroscopy of the excess proton in liquid water. Science 350(6256), 78–82 (2015)

    Article  Google Scholar 

  3. Z.S. Nickolov, J. Miller, Water structure in aqueous solutions of alkali halide salts: FTIR spectroscopy of the OD stretching band. J. Colloid Interface Sci. 287(2), 572–580 (2005)

    Article  CAS  Google Scholar 

  4. S. Park, M.B. Ji, K.J. Gaffney, Ligand exchange dynamics in aqueous solution studied with 2DIR spectroscopy. J. Phys. Chem. B 114(19), 6693–6702 (2010)

    Article  CAS  Google Scholar 

  5. T. Brinzer, E.J. Berquist, Z. Ren, 任哲, S. Dutta, C.A. Johnson, C.S. Krisher, D.S. Lambrecht, S. Garrett-Roe, Ultrafast vibrational spectroscopy (2D-IR) of CO2 in ionic liquids: carbon capture from carbon dioxide’s point of view. The J. Chem. Phys. 142(21), 212425 (2015)

    Google Scholar 

  6. Y.R. Shen, Basic theory of surface sum-frequency generation. The J. Phys. Chem. C 116, 15505–15509 (2012)

    Article  CAS  Google Scholar 

  7. Y.R. Shen, V. Ostroverkhov, Sum-frequency vibrational spectroscopy on water interfaces: polar orientation of water molecules at interfaces. Chem. Rev. 106(4), 1140–1154 (2006)

    Article  CAS  Google Scholar 

  8. J. Verlet, A. Bragg, A. Kammrath, O. Cheshnovsky, D. Neumark, Observation of large water-cluster anions with surface-bound excess electrons. Science 307(5706), 93–96 (2005)

    Article  CAS  Google Scholar 

  9. I. Michalarias, I. Beta, R. Ford, S. Ruffle, J.C. Li, Inelastic neutron scattering studies of water in DNA. Appl. Phys. A Mater. Sci. Process. 74, s1242–s1244 (2002)

    Article  CAS  Google Scholar 

  10. J.C. Li, A.I. Kolesnikov, Neutron spectroscopic investigation of dynamics of water ice. J. Mol. Liq. 100(1), 1–39 (2002)

    Article  CAS  Google Scholar 

  11. S.T. van der Post, C.S. Hsieh, M. Okuno, Y. Nagata, H.J. Bakker, M. Bonn, J. Hunger, Strong frequency dependence of vibrational relaxation in bulk and surface water reveals sub-picosecond structural heterogeneity. Nat. Commun. 6, 8384 (2015)

    Article  Google Scholar 

  12. J. Wang, Ultrafast two-dimensional infrared spectroscopy for molecular structures and dynamics with expanding wavelength range and increasing sensitivities: from experimental and computational perspectives. Int. Rev. Phys. Chem. 36(3), 377–431 (2017)

    Article  Google Scholar 

  13. R.A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, 1991)

    Google Scholar 

  14. X. Zhang, Y. Xu, Y. Zhou, Y. Gong, Y. Huang, C.Q. Sun, HCl, KCl and KOH solvation resolved solute-solvent interactions and solution surface stress. Appl. Surf. Sci. 422, 475–481 (2017)

    Article  CAS  Google Scholar 

  15. C.Q. Sun, Atomic scale purification of electron spectroscopic information (U.S. 2017 Patent No. 9,625,397B2) (United States, 2017)

    Google Scholar 

  16. X.J. Liu, M.L. Bo, X. Zhang, L. Li, Y.G. Nie, H. TIan, Y. Sun, S. Xu, Y. Wang, W. Zheng, C.Q. Sun, Coordination-resolved electron spectrometrics. Chem. Rev. 115(14), 6746–6810 (2015)

    Article  CAS  Google Scholar 

  17. Q. Zeng, C. Yao, K. Wang, C.Q. Sun, B. Zou, Room-temperature NaI/H2O compression icing: solute–solute interactions. PCCP 19, 26645–26650 (2017)

    Article  CAS  Google Scholar 

  18. Q. Zeng, T. Yan, K. Wang, Y. Gong, Y. Zhou, Y. Huang, C.Q. Sun, B. Zou, Compression icing of room-temperature NaX solutions (X = F, Cl, Br, I). Phys. Chem. Chem. Phys. 18(20), 14046–14054 (2016)

    Article  CAS  Google Scholar 

  19. X. Zhang, Y. Zhou, Y. Gong, Y. Huang, C. Sun, Resolving H(Cl, Br, I) capabilities of transforming solution hydrogen-bond and surface-stress. Chem. Phys. Lett. 678, 233–240 (2017)

    Article  CAS  Google Scholar 

  20. M. Nagasaka, H. Yuzawa, N. Kosugi, Development and application of in situ/operando soft X-ray transmission cells to aqueous solutions and catalytic and electrochemical reactions. J. Electron Spectrosc. Relat. Phenom. 200, 293–310 (2015)

    Article  CAS  Google Scholar 

  21. Y.L. Huang, X. Zhang, Z.S. Ma, Y.C. Zhou, W.T. Zheng, J. Zhou, C.Q. Sun, Hydrogen-bond relaxation dynamics: resolving mysteries of water ice. Coord. Chem. Rev. 285, 109–165 (2015)

    Article  CAS  Google Scholar 

  22. J.C. Araque, S.K. Yadav, M. Shadeck, M. Maroncelli, C.J. Margulis, How is diffusion of neutral and charged tracers related to the structure and dynamics of a room-temperature ionic liquid? Large deviations from Stokes-Einstein behavior explained. J. Phys. Chem. B 119(23), 7015–7029 (2015)

    Article  CAS  Google Scholar 

  23. C.Q. Sun, J. Chen, X. Liu, X. Zhang, Y. Huang, (Li, Na, K)OH hydration bondin thermodynamics: solution self-heating. Chem. Phys. Lett. 696, 139–143 (2018)

    Article  CAS  Google Scholar 

  24. Y. Wang, W. Zhu, K. Lin, L. Yuan, X. Zhou, S. Liu, Ratiometric detection of Raman hydration shell spectra. J. Raman Spectrosc. 47(10), 1231–1238 (2016)

    Article  CAS  Google Scholar 

  25. V. Vchirawongkwin, B.M. Rode, I. Persson, Structure and dynamics of sulfate ion in aqueous solution an ab initio QMCF MD simulation and large angle X-ray scattering study. J. Phys. Chem. B 111(16), 4150–4155 (2007)

    Article  CAS  Google Scholar 

  26. N. Galamba, Mapping structural perturbations of water in ionic solutions. J. Phys. Chem. B 116(17), 5242–5250 (2012)

    Article  CAS  Google Scholar 

  27. A. Bragg, J. Verlet, A. Kammrath, O. Cheshnovsky, D. Neumark, Hydrated electron dynamics: from clusters to bulk. Science 306(5696), 669–671 (2004)

    Article  CAS  Google Scholar 

  28. M. Nagasaka, H. Yuzawa, N. Kosugi, Interaction between water and alkali metal ions and its temperature dependence revealed by oxygen K-edge X-ray absorption spectroscopy. J. Phys. Chem. B 121(48), 10957–10964 (2017)

    Article  CAS  Google Scholar 

  29. Y. Otsuki, T. Sugimoto, T. Ishiyama, A. Morita, K. Watanabe, Y. Matsumoto, Unveiling subsurface hydrogen-bond structure of hexagonal water ice. Phys. Rev. B 96(11), 115405 (2017)

    Article  Google Scholar 

  30. C.Q. Sun, Y. Sun, The attribute of water: single notion, multiple myths. Springer Ser. Chem. Phys. 113 (2016)

    Google Scholar 

  31. Y. Shi, Z. Zhang, W. Jiang, Z. Wang, Theoretical study on electronic and vibrational properties of hydrogen bonds in glycine-water clusters. Chem. Phys. Lett. 684, 53–59 (2017)

    Article  CAS  Google Scholar 

  32. Y. Huang, X. Zhang, Z. Ma, Y. Zhou, G. Zhou, C.Q. Sun, Hydrogen-bond asymmetric local potentials in compressed ice. J. Phys. Chem. B 117(43), 13639–13645 (2013)

    Article  CAS  Google Scholar 

  33. Y.L. Huang, X. Zhang, Z.S. Ma, G.H. Zhou, Y.Y. Gong, C.Q. Sun, Potential paths for the hydrogen-bond relaxing with (H2O)(N) cluster size. J. Phys. Chem. C 119(29), 16962–16971 (2015)

    Article  CAS  Google Scholar 

  34. C.Q. Sun, Size dependence of nanostructures: Impact of bond order deficiency. Prog. Solid State Chem. 35(1), 1–159 (2007)

    Article  Google Scholar 

  35. C.Q. Sun, J. Chen, Y. Gong, X. Zhang, Y. Huang, (H, Li)Br and LiOH solvation bonding dynamics: molecular nonbond interactions and solute extraordinary capabilities. J. Phys. Chem. B 122(3), 1228–1238 (2018)

    Article  CAS  Google Scholar 

  36. C.Q. Sun, Thermo-mechanical behavior of low-dimensional systems: the local bond average approach. Prog. Mater Sci. 54(2), 179–307 (2009)

    Article  CAS  Google Scholar 

  37. X.X. Yang, J.W. Li, Z.F. Zhou, Y. Wang, L.W. Yang, W.T. Zheng, C.Q. Sun, Raman spectroscopic determination of the length, strength, compressibility, Debye temperature, elasticity, and force constant of the C-C bond in graphene. Nanoscale 4(2), 502–510 (2012)

    Article  CAS  Google Scholar 

  38. K. Amann-Winkel, R. Böhmer, F. Fujara, C. Gainaru, B. Geil, T. Loerting, Colloquiu: water’s controversial glass transitions. Rev. Mod. Phys. 88(1), 011002 (2016)

    Article  Google Scholar 

  39. A. Wong, L. Shi, R. Auchettl, D. McNaughton, D.R. Appadoo, E.G. Robertson, Heavy snow: IR spectroscopy of isotope mixed crystalline water ice. Phys. Chem. Chem. Phys. 18(6), 4978–4993 (2016)

    Article  CAS  Google Scholar 

  40. X. Zhang, P. Sun, Y. Huang, T. Yan, Z. Ma, X. Liu, B. Zou, J. Zhou, W. Zheng, C.Q. Sun, Water’s phase diagram: from the notion of thermodynamics to hydrogen-bond cooperativity. Prog. Solid State Chem. 43, 71–81 (2015)

    Article  Google Scholar 

  41. C.Q. Sun, X. Zhang, X. Fu, W. Zheng, J.-L. Kuo, Y. Zhou, Z. Shen, J. Zhou, Density and phonon-stiffness anomalies of water and ice in the full temperature range. J. Phys. Chem. Lett. 4, 3238–3244 (2013)

    Article  CAS  Google Scholar 

  42. C.Q. Sun, X. Zhang, J. Zhou, Y. Huang, Y. Zhou, W. Zheng, Density, elasticity, and stability anomalies of water molecules with fewer than four neighbors. J. Phys. Chem. Lett. 4, 2565–2570 (2013)

    Article  CAS  Google Scholar 

  43. Y. Zhou, Y. Huang, Z. Ma, Y. Gong, X. Zhang, Y. Sun, C.Q. Sun, Water molecular structure-order in the NaX hydration shells (X= F, Cl, Br, I). J. Mol. Liq. 221, 788–797 (2016)

    Article  CAS  Google Scholar 

  44. S. Hajati, S. Coultas, C. Blomfield, S. Tougaard, XPS imaging of depth profiles and amount of substance based on Tougaard’s algorithm. Surf. Sci. 600(15), 3015–3021 (2006)

    Article  CAS  Google Scholar 

  45. M.P. Seah, I.S. Gilmore, S.J. Spencer, Background subtraction—II. General behaviour of REELS and the Tougaard universal cross section in the removal of backgrounds in AES and XPS. Surf. Sci. 461(1–3), 1–15 (2000)

    Article  CAS  Google Scholar 

  46. X.B. Zhou, J.L. Erskine, Surface core-level shifts at vicinal tungsten surfaces. Phys. Rev. B 79(15), 155422 (2009)

    Article  Google Scholar 

  47. Z. Zhang, D. Li, W. Jiang, Z. Wang, The electron density delocalization of hydrogen bond systems. Adv. Phys.: X 3(1), 1428915 (2018)

    Google Scholar 

  48. X. Wu, W. Lu, W. Ou, M.C. Caumon, J. Dubessy, Temperature and salinity effects on the Raman scattering cross section of the water OH-stretching vibration band in NaCl aqueous solutions from 0 to 300 °C. J. Raman Spectrosc. 48(2), 314–322 (2016)

    Article  Google Scholar 

  49. Y. Zhou, Y. Huang, L. Li, Y. Gong, X. Liu, X. Zhang, C.Q. Sun, Hydrogen-bond transition from the vibration mode of ordinary water to the (H, Na)I hydration states: molecular interactions and solution viscosity. Vib. Spectrosc. 94, 31–36 (2018)

    Article  CAS  Google Scholar 

  50. J. Chen, C. Yao, X. Liu, X. Zhang, C.Q. Sun, Y. Huang, H2O2 and HO- solvation dynamics: solute capabilities and solute-solvent molecular interactions. Chem. Sel. 2(27), 8517–8523 (2017)

    CAS  Google Scholar 

  51. D.R. Lide, CRC Handbook of Chemistry and Physics, 80th edn. (CRC Press, Boca Raton, 1999)

    Google Scholar 

  52. Q. Wei, D. Zhou, H. Bian, Negligible cation effect on the vibrational relaxation dynamics of water molecules in NaClO4 and LiClO4 aqueous electrolyte solutions. RSC Advances 7(82), 52111–52117 (2017)

    Article  CAS  Google Scholar 

  53. J.W. Gibbs, On the equilibrium of heterogeneous substances. Am. J. Sci. 96, 441–458 (1878)

    Article  Google Scholar 

  54. R.C. Cammarata, Surface and interface stress effects in thin films. Prog. Surf. Sci. 46(1), 1–38 (1994)

    Article  CAS  Google Scholar 

  55. T. Young, An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 65–87 (1805)

    Google Scholar 

  56. M. Zhao, W.T. Zheng, J.C. Li, Z. Wen, M.X. Gu, C.Q. Sun, Atomistic origin, temperature dependence, and responsibilities of surface energetics: an extended broken-bond rule. Phys. Rev. B 75(8), 085427 (2007)

    Article  Google Scholar 

  57. M.T. Suter, P.U. Andersson, J.B. Pettersson, Surface properties of water ice at 150–191 K studied by elastic helium scattering. J. Chem. Phys. 125(17), 174704 (2006)

    Article  Google Scholar 

  58. C.Q. Sun, Y. Sun, Y.G. Ni, X. Zhang, J.S. Pan, X.H. Wang, J. Zhou, L.T. Li, W.T. Zheng, S.S. Yu, L.K. Pan, Z. Sun, Coulomb repulsion at the nanometer-sized contact: a force driving superhydrophobicity, superfluidity, superlubricity, and supersolidity. J. Phys. Chem. C 113(46), 20009–20019 (2009)

    Article  CAS  Google Scholar 

  59. X. Zhang, Y. Huang, Z. Ma, L. Niu, C.Q. Sun, From ice supperlubricity to quantum friction: electronic repulsivity and phononic elasticity. Friction 3(4), 294–319 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, C.Q. (2019). Differential Phonon Spectrometrics (DPS). In: Solvation Dynamics. Springer Series in Chemical Physics, vol 121. Springer, Singapore. https://doi.org/10.1007/978-981-13-8441-7_2

Download citation

Publish with us

Policies and ethics