Skip to main content

A General Monocular Visual Servoing Structure for Mobile Robots in Natural Scene Using SLAM

  • Conference paper
  • First Online:
Cognitive Systems and Signal Processing (ICCSIP 2018)

Abstract

In this paper, a general visual servoing structure for mobile robots is proposed to handle the situation that the target scene gets out of the camera view. Most existing visual servoing strategies are based on the assumption that images always share common feature points with the desired one during the servoing procedure, which actually cannot be guaranteed by the controller. To avoid such problems, simultaneous localization and mapping (SLAM) is introduced to visual servoing system, which contains the front-end for estimating the current pose and the back-end for optimizing the desired pose of the mobile robot. Meanwhile, compared with the traditional servoing system with artificial feature points, the scale of robot poses can be fixed by the map in the proposed scheme, which makes it applicable in natural scene. In addition, all position-based visual servoing controllers are implementable in the proposed servoing architecture. The servoing structure has been implemented on a nonholonomic mobile robot and experimental results are exhibited to illustrate the effectiveness and feasibility of the proposed approach.

This work is supported in part by National Natural Science Foundation of China under Grants 61573195 and U1613210, in part by Tianjin Science and Technology Program under Grants 17KPXMSF00110.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun, W., Tang, S., Gao, H., Zhao, J.: Two time-scale tracking control of nonholonomic wheeled mobile robots. IEEE Trans. Control Syst. Technol. 24(6), 2059–2069 (2016)

    Article  Google Scholar 

  2. Chen, M.: Disturbance attenuation tracking control for wheeled mobile robots with skidding and slipping. IEEE Trans. Ind. Electron. 64(4), 3359–3368 (2017)

    Article  Google Scholar 

  3. Moon, C., Chung, W.: Kinodynamic planner dual-tree RRT (DT-RRT) for two-wheeled mobile robots using the rapidly exploring random tree. IEEE Trans. Ind. Electron. 62(2), 1080–1090 (2015)

    Article  Google Scholar 

  4. Montiel, O., Seplveda, R., Orozco-Rosas, U.: Optimal path planning generation for mobile robots using parallel evolutionary artificial potential field. J. Intell. Robot. Syst. 79(2), 237–257 (2015)

    Article  Google Scholar 

  5. Wang, K., Liu, Y., Li, L.: Visual servoing trajectory tracking of nonholonomic mobile robots without direct position measurement. IEEE Trans. Robot. 30(4), 1026–1035 (2014)

    Article  Google Scholar 

  6. Zhang, X., Fang, Y., Sun, N.: Visual servoing of mobile robots for posture stabilization: from theory to experiments. Int. J. Robust Nonlinear Control 25(1), 1–15 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Li, B., Fang, Y., Hu, G., Zhang, X.: Model-free unified tracking and regulation visual servoing of wheeled mobile robots. IEEE Trans. Control Syst. Technol. 24(4), 1328–1339 (2016)

    Article  Google Scholar 

  8. Chaumette, F., Hutchinson, S.: Visual servo control. I. Basic approaches. IEEE Robot. Autom. Mag. 13(4), 82–90 (2006)

    Article  Google Scholar 

  9. Wilson, W.J., Hulls, C.C.W., Bell, G.S.: Relative end-effector control using cartesian position based visual servoing. IEEE Trans. Robot. Autom. 12(5), 684–696 (1996)

    Article  Google Scholar 

  10. Espiau, B., Chaumette, F., Rives, P.: A new approach to visual servoing in robotics. IEEE Trans. Robot. Autom. 8(3), 313–326 (1992)

    Article  Google Scholar 

  11. Mariottini, G.L., Oriolo, G., Prattichizzo, D.: Image-based visual servoing for nonholonomic mobile robots using epipolar geometry. IEEE Trans. Robot. 23(1), 87–100 (2007)

    Article  Google Scholar 

  12. Zhang, X., Fang, Y., Li, B., Wang, J.: Visual servoing of nonholonomic mobile robots with uncalibrated camera-to-robot parameters. IEEE Trans. Ind. Electron. 64(1), 390–400 (2017)

    Article  Google Scholar 

  13. Li, B., Zhang, X., Fang, Y., Shi, W.: Visual servoing of wheeled mobile robots without desired images. IEEE Trans. Cybern. (to be published). https://doi.org/10.1109/TCYB.2018.2828333

  14. Thomas, J., Loianno, G., Daniilidis, K., Kumar, V.: Visual servoing of quadrotors for perching by hanging from cylindrical objects. IEEE Robot. Autom. Lett. 1(1), 57–64 (2016)

    Article  Google Scholar 

  15. Zheng, D., Wang, H., Wang, J., Chen, S., Chen, W., Liang, X.: Image-based visual servoing of a quadrotor using virtual camera approach. IEEE/ASME Trans. Mechatron. 22(2), 972–982 (2017)

    Article  Google Scholar 

  16. Serra, P., Cunha, R., Hamel, T., Cabecinhas, D., Silvestre, C.: Landing of a quadrotor on a moving target using dynamic image-based visual servo control. IEEE Trans. Robot. 32(6), 1524–1535 (2016)

    Article  Google Scholar 

  17. Guenard, N., Hamel, T., Mahony, R.: A practical visual servo control for an unmanned aerial vehicle. IEEE Trans. Robot. 24(2), 331–340 (2008)

    Article  Google Scholar 

  18. Cao, Z., et al.: Image dynamics-based visual servoing for quadrotors tracking a target with a nonlinear trajectory observer. IEEE Trans. Syst. Man Cybern.: Syst. (to be published). https://doi.org/10.1109/TSMC.2017.2720173

  19. Do, K.D., Jiang, Z.P., Pan, J.: Simultaneous tracking and stabilization of mobile robots: an adaptive approach. IEEE Trans. Autom. Control 49(7), 1147–1151 (2004)

    Article  MathSciNet  Google Scholar 

  20. Astolfi, A.: Discontinuous control of nonholonomic systems. Syst. Control Lett. 27(1), 37–46 (1996)

    Article  MathSciNet  Google Scholar 

  21. Yuan, H., Qu, Z.: Continuous time-varying pure feedback control for chained nonholonomic systems with exponential convergent rate. IFAC Proc. Vol. 41(2), 15203–15208 (2008)

    Article  Google Scholar 

  22. Jean, J.H., Lian, F.L.: Robust visual servo control of a mobile robot for object tracking using shape parameters. IEEE Trans. Control Syst. Technol. 20(6), 1461–1472 (2012)

    Article  Google Scholar 

  23. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: Part I. IEEE Robot. Autom. Mag. 13(2), 99–110 (2006)

    Article  Google Scholar 

  24. Bailey, T., Durrant-Whyte, H.: Simultaneous localization and mapping (SLAM): Part II. IEEE Robot. Autom. Mag. 13(3), 108–117 (2006)

    Article  Google Scholar 

  25. Stachniss, C., Leonard, J.J., Thrun, S.: Simultaneous localization and mapping. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 1153–1176. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32552-1_46

    Chapter  Google Scholar 

  26. Guivant, J.E., Nebot, E.M.: Optimization of the simultaneous localization and map-building algorithm for real-time implementation. IEEE Trans. Robot. Autom. 17(3), 242–257 (2001)

    Article  Google Scholar 

  27. Steux, B., El Hamzaoui, O.: tinySLAM: a SLAM algorithm in less than 200 lines of C code. In: Proceedings of the International Conference on Control, Automation, Robotics and Vision (ICARCV), pp. 1975–1979 (2010)

    Google Scholar 

  28. Yang, Z., Shen, S.: Monocular visual–inertial state estimation with online initialization and camera–IMU extrinsic calibration. IEEE Trans. Autom. Sci. Eng. 14(1), 39–51 (2017)

    Article  Google Scholar 

  29. Lu, F., Milios, E.: Globally consistent range scan alignment for environment mapping. Auton. Robots 4(4), 333–349 (1997)

    Article  Google Scholar 

  30. Dhiman, N.K., Deodhare, D., Khemani, D.: Where am I? Creating spatial awareness in unmanned ground robots using SLAM: a survey. Sadhana 40(5), 1385–1433 (2015)

    Article  Google Scholar 

  31. Leutenegger, S., Lynen, S., Bosse, M., et al.: Keyframe-based visual–inertial odometry using nonlinear optimization. Int. J. Robot. Res. 34(3), 314–334 (2015)

    Article  Google Scholar 

  32. Huber, P.J.: Robust estimation of a location parameter. Ann. Math. Stat. 35(1), 73–101 (1964)

    Article  MathSciNet  Google Scholar 

  33. Li, B., Fang, Y., Zhang, X.: Essential-matrix-based visual servoing of nonholonomic mobile robots without short baseline degeneration. Int. J. Robot. Autom. (to be publised). https://doi.org/10.2316/Journal.206.2015.4.206-4384

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuebo Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, C., Zhang, X., Gao, H. (2019). A General Monocular Visual Servoing Structure for Mobile Robots in Natural Scene Using SLAM. In: Sun, F., Liu, H., Hu, D. (eds) Cognitive Systems and Signal Processing. ICCSIP 2018. Communications in Computer and Information Science, vol 1006. Springer, Singapore. https://doi.org/10.1007/978-981-13-7986-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7986-4_41

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7985-7

  • Online ISBN: 978-981-13-7986-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics