Skip to main content

Overview of Nonlinear Schrödinger Equations

  • Chapter
  • First Online:
Schrödinger Equations in Nonlinear Systems

Abstract

The present chapter deals with an overview of nonlinear Schrödinger equations that are mainly used to investigate the dynamics of nonlinear matter waves of either the nonlinear transmission networks or the Bose–Einstein condensates: The one-dimensional cubic nonlinear Schröodinger equations including the standard and the dissipative cases, the derivative nonlinear Schrödinger equations, the inhomogeneous nonlinear Schrödinger equations, and the multicomponent nonlinear Schrödinger equations

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdullaev, F.K., Caputo, J.G., Kraenkel, R.A., Malomed, B.A.: Controlling collapse in Bose-Einstein condensates by temporal modulation of the scattering length. Phys. Rev. A 67, 013605 (2003)

    Article  ADS  Google Scholar 

  2. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, UK (1991)

    Book  Google Scholar 

  3. Agrawal, G.P.: Nonlinear Fiber Optics. Academic, San Diego (2007)

    MATH  Google Scholar 

  4. Agrawal, G.P.: Nonlinear Fiber Optics. Academic, San Diego (2001)

    MATH  Google Scholar 

  5. Akhmediev, N.N., Ankiewicz, A.: Solitons: Nonlinear Pulses and Beams. Kluwer, Boston (1997)

    MATH  Google Scholar 

  6. Al, Khawaja U.: Exact solitonic solutions of the Gross-Pitaevskii equation with a linear potential. Phys. Rev. E 75, 066607 (2007)

    Article  ADS  Google Scholar 

  7. Al, Khawaja U., Pethick, C.J., Smith, H.: Surface of a Bose-Einstein condensed atomic cloud. Phys. Rev. A 60, 1507 (1999)

    Article  ADS  Google Scholar 

  8. Anderson, A., Lisak, M.: Nonlinear asymmetric self-phase modulation and self-steepening of pulses in long optical waveguides. Phys. Rev. A 27, 1393 (1983)

    Article  ADS  Google Scholar 

  9. Chen, H.H., Lee, Y.C., Liu, C.S.: Integrability of nonlinear hamiltonian systems by inverse scattering method. Phys. Scripta 20, 490 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  10. Craig, W., Sulem, C., Sulem, P.L.: Nonlinear modulation of gravity waves: a rigorous approach. Nonlinearity 5, 497–522 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  11. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463 (1999)

    Article  ADS  Google Scholar 

  12. Demiray, H.: Modulation of nonlinear waves in a thin elastic tube filled with a viscous fluid. Int. J. Eng. Sci. 37, 1877–1891 (1999)

    Article  MathSciNet  Google Scholar 

  13. Doelman, A.: On the nonlinear evolution of patterns (modulation equations and their solutions). Ph.D. thesis, University of Utrecht, The Netherlands (1990)

    Google Scholar 

  14. Fan, E.G.: Darboux transformation and soliton-like solutions for the Gerdjikov-Ivanov equation. J. Phys. A 33, 6925 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  15. FordyA, P.: Derivative nonlinear Schrödinger equations and Hermitian symmetric spaces. J. Phys. A 17, 1235 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  16. Fujioka, J., Espinosa, A.: Soliton-Like Solution of an extended NLS equation existing in resonance with linear dispersive waves. J. Phys. Soc. Jpn. 66, 2601 (1997)

    Article  ADS  Google Scholar 

  17. Gammal, A., Frederico, T., Tomio, L., Chomaz, P.: Atomic Bose-Einstein condensation with three-body interactions and collective excitations. Phys. B: At. Mol. Opt. Phys. 33, 4053 (2000)

    Article  ADS  Google Scholar 

  18. Gerdjikov, V.S.: Bose-Einsten condensate and spectral properties on multicomponent nonlinear Schrödinger equation. Discret. Contin. Dyn. Syst. Ser. S 4(5), 1181 (2011)

    Article  Google Scholar 

  19. Gerdjikov, V.S., Kostov, N.A., Valchev, T.I.: Solutions of multi-component NLS models and spinor Bose-Einstein condensates. Phys. D 238, 1306 (2009)

    Article  MathSciNet  Google Scholar 

  20. Gerdzhikov, V.S., Invanov, M.I., Kulish, P.P.: Quadratic bundle and nonlinear equations. Theor. Math. Phys. 44, 784–795 (1980)

    Article  Google Scholar 

  21. Hasimoto, H., Ono, H.: Nonlinear modulation of gravity waves. J. Phys. Soc. Jpn. 33, 805–811 (1972)

    Article  ADS  Google Scholar 

  22. Ieda, J., Miyakawa, T., Wadati, M.: Matter-wave solitons in an F = 1 spinor Bose-Einstein condensate. J. Phys. Soc. Jpn. 73, 2996 (2004)

    Article  ADS  Google Scholar 

  23. Duan, Jinqiao, Holmes, Philip: Fronts, domain walls and pulses in a generalized Ginzburg-Landau equation. Proc. Edinb. Math. Soc. 38(1), 77–97 (1995)

    Article  MathSciNet  Google Scholar 

  24. Jiotsa, A.K., Kofané, T.C.: Dynamics of pattern formation and modulational instabilities in the quintic complex Ginzburg-Landau equation. J. Phys. Soc. Jpn. 72, 1800 (2003)

    Article  ADS  Google Scholar 

  25. Johnson, R.S.: On the modulation of water waves in the neighbourhood of kh \(\approx \) 1.363. Proc. R. Soc. Lond. A 357, 131 (1977)

    Google Scholar 

  26. Kaup, D.J., Newell, A.C.: An exact solution for a derivative nonlinear Schrödinger equation. J. Math. Phys. 19, 798 (1978)

    Article  ADS  Google Scholar 

  27. Kengne, E., Lakhssassi, A., Liu, W.M.: Modeling of matter-wave solitons in a nonlinear inductor-capacitor network through a Gross-Pitaevskii equation with time-dependent linear potential. Phys. Rev E. 96, 022221 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  28. Kengne, E., Abdourahman.: Generation of nonlinear modulated waves in a modified Noguchi electrical transmission network. Chaos, Solitons and Fractals 92, 1–8 (2016)

    Google Scholar 

  29. Kengne, E., Lakhssassi, A.: Analytical study of dynamics of matter-wave solitons in lossless nonlinear discrete bi-inductance transmission lines. Phys. Rev. E 91, 032907 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  30. Kengne, E., Lakhssassi, A., Liu, W.M.: Dynamics of modulated waves in a lossy modified Noguchi electrical transmission line. Phys. Rev. E 91, 062915 (2015)

    Article  ADS  Google Scholar 

  31. Kengne, E., Vaillancourt, R., Malomed, B.A.: Coupled nonlinear Schrödinger equations for solitary-wave and kink signals propagating in discret nonlinear dispersive transmission lines. Int. J. Mod. Phys. B 23, 133 (2009)

    Article  ADS  Google Scholar 

  32. Kengne, E., Tadmon, C., Nguyen-Ba, T., Vaillancourt, R.: Higher order bright solitons and shock signals in nonlinear transmission lines. Chin. J. Phys. 47(5), 698703 (2009)

    Google Scholar 

  33. Kengne, E., Liu, W.M.: Exact solutions of the derivative nonlinear Schrödinger equation for a nonlinear transmission line. Phys. Rev. E 73, 026603 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  34. Kengne, E., Talla, P.K.: Dynamics of bright matter wave solitons in Bose-Einstein condensates in an expulsive parabolic and complex potential. J. Phys. B 39, 3679 (2006)

    Article  ADS  Google Scholar 

  35. Kengne, E.: Envelope modulational instability in the nonlinear dissipative transmission line. J. Nonlinear Oscil. 5(1), 23–31 (2002)

    MathSciNet  MATH  Google Scholar 

  36. Kitaev, A.V., Vartanian, A.H.: Higher order asymptotics of the modified non-linear Schrödinger equation. Commun. Partial Differ. Equ. 25, 1043–1098 (2000)

    Article  Google Scholar 

  37. Kivshar, Y.S., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic, New York (2003)

    Google Scholar 

  38. Li, L., Li, Z., Malomed, B.A., Mihalache, D., Liu, W.M.: Exact soliton solutions and nonlinear modulation instability in spinor Bose-Einstein condensates. Phys. Rev. A 72 (2005)

    Google Scholar 

  39. Liang, Z.X., Zhang, Z.D., Liu, W.M.: Dynamics of a bright soliton in Bose-Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic potential. Phys. Rev. Lett. 94, 050402 (2005)

    Article  ADS  Google Scholar 

  40. Manakov, S.V.: On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Zh. Eksp. Teor. Fiz. 65, 505 (1973)

    ADS  Google Scholar 

  41. Marklund, M., Shukla, P.K.: Modulational instability of partially coherent signals in electrical transmission lines. Phys. Rev. E. 73, 057601 (2006)

    Google Scholar 

  42. Marquié, R., Bilbault, J.M., Remoissenet, M.: Nonlinear Schrödinger models and modulational instability in real electrical lattices. Phys. D 87, 371–374 (1995)

    Article  Google Scholar 

  43. Mei, C.C.: The Applied Dynamics of Ocean Waves. World Scientific, Singapore (1989)

    Google Scholar 

  44. Mohamadou, A., Wamba, E., Doka, S.Y., Ekogo, T.B., Kofane, T.C.: Generation of matter-wave solitons of the Gross-Pitaevskii equation with a time-dependent complicated potential. Phys. Rev. A 84, 023602 (2011)

    Article  ADS  Google Scholar 

  45. Moses, J., Malomed, B., Wise, F.: Self-steepening of ultrashort optical pulses without self-phase-modulation. Phys. Rev. A 76, 1–4 (2007)

    Article  Google Scholar 

  46. Moses, J., Malomed, B., Wise, F.: Self-steepening of ultrashort optical pulses without self-phase-modulation. Phys. Rev. A 76, 021802(R) (2007)

    Article  ADS  Google Scholar 

  47. Nickel, J., Schürmann, H.W.: Comment on “Exact solutions of the derivative nonlinear Schrödinger equation for a nonlinear transmission line”. Phys. Rev. E 75, 038601 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  48. Pelap, F.B., Faye, M.M.: Solitonlike excitations in a one-dimensional electrical transmission line. JMP 46, 033502 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  49. Rapti, Z., Kevrekidis, P.G., Frantzeskakis, D.J., Malomed, B.A.: On the modulational instability of the nonlinear Schrödinger equation with dissipation. Phys. Scr. 74(T113) (2004)

    Google Scholar 

  50. Rogers C., Malomed B., LI, H.J., Chow, K.W.: Propagating wave patterns in a derivative nonlinear Schrödinger system with quintic nonlinearity. J. Phys. Soc. Jpn. 81, 094005 (2012)

    Google Scholar 

  51. Rogister, A.: Parallel propagation of nonlinear low-frequency waves in high-\(\beta \) plasma. Phys. Fluids 14, 2733 (1971)

    Article  ADS  Google Scholar 

  52. Ruderman, M.S.: Propagation of solitons of the derivative nonlinear Schrödinger equation in a plasma with fluctuating density. Phys. Plasmas 9, 2940 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  53. Segur, H., Henderson, D.M., Hammack, J.L., Li, C.-M., Pheiff, D., Socha, K.: Stabilizing the Benjamin-Feir Instability. J. Fluid Mech. 539, 229–271 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  54. Sulem, C., Sulem, P.-L.: The Nonlinear Schrödinger Equation: Self Focusing and Wave Collapse. Springer, New York (1999)

    MATH  Google Scholar 

  55. Takhtajan, L.A., Faddeev, L.D.: Hamiltonian Methods in the Theory of Solitons. Nauka, Moscow (1986)

    MATH  Google Scholar 

  56. Theocharis, G., Rapti, Z., Kevrekidis, P.G., Frantzeskakis, D.J., Konotop, V.V.: Modulational instability of Gross-Pitaevskii-type equations in \(1+1\) dimensions. Phys. Rev. A 67, 063610 (2003)

    Google Scholar 

  57. Uchiyama, M., Ieda, J., Wadati, M.: Multicomponent bright solitons in F \(=\) 2 spinor Bose-Einstein condensates. J. Phys. Soc. Jpn. 76, 74005 (2007)

    Article  Google Scholar 

  58. Xu, J., Fan, E., Chen, Y.: Long-time asymptotic for the derivative Nonlinear Schrödinger equation with step-like initial value. Math. Phys. Anal. Geom. 16, 253–288 (2013)

    Article  MathSciNet  Google Scholar 

  59. Yan, Z.: Optical solitary wave solutions to nonlinear Schrödinger equation with cubic-quintic nonlinearity in non-Kerr media. J. Phys. Soc. Jpn. 73, 2397 (2004)

    Article  ADS  Google Scholar 

  60. Zakharov, V.E., Manakov, S.V., Novikov, S.P., Pitaevskii, L.P.: The Theory of Solitons: The Inverse-Problem Method. Nauka, Moscow (1980)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wu-Ming Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, WM., Kengne, E. (2019). Overview of Nonlinear Schrödinger Equations. In: Schrödinger Equations in Nonlinear Systems. Springer, Singapore. https://doi.org/10.1007/978-981-13-6581-2_1

Download citation

Publish with us

Policies and ethics