Skip to main content

Abstract

Drug delivery is defined as administration of drug component inside the body, and the system adopted for the same is known as drug delivery system. Advancements in the drug delivery system are gaining more attention and popularity due to the use of nanoformulations that enables efficient, effective and specific targeting of the drug. Several drug carriers such as liposomes, aptamers, quantum dots, peptide, polymers, metals and magnetic nanoparticle-based delivery are categorised as advanced generation drug delivery systems. The structural complexity of nano-based drug delivery system, e.g. nanocapsules, dendrimers, nanosponges, nanocrystals, nanogels and nanocapsules, provides high surface area for precise targeting in the field of cancer management and several other life-threatening diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alley SC, Okeley NM, Senter PD (2010) Antibody-drug conjugates: targeted drug delivery for cancer. Curr Opin Chem Biol 14:529–537

    Article  CAS  PubMed  Google Scholar 

  • Amstad E et al (2009) Surface functionalization of single superparamagnetic iron oxide nanoparticles for targeted magnetic resonance imaging. Small Weinh Bergstr Ger 5:1334–1342

    Article  CAS  Google Scholar 

  • Bagalkot V, Farokhzad OC, Langer R, Jon S (2006) An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew Chem Int Ed Eng 45:8149–8152

    Article  CAS  Google Scholar 

  • Bamrungsap S et al (2012) Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine 7:1253–1271

    Article  CAS  PubMed  Google Scholar 

  • Bates PJ, Choi EW, Nayak LV (2009) G-rich oligonucleotides for cancer treatment. Methods Mol Biol Clifton NJ 542:379–392

    Article  CAS  Google Scholar 

  • Bhat M, Shenoy SD, Udupa N, Srinivas CR (1995) Optimization of delivery of betamethasone-dipropionate from skin preparation. Indian Drugs 32:211–214

    CAS  Google Scholar 

  • BrentuximabVedotin (ADCETRIS®) Seattle genetics. Available at: http://www.seattlegenetics.com/pipeline/brentuximab-vedotin

  • Çağdaş M, Sezer AD, Bucak S (2014) Liposomes as potential drug carrier systems for drug delivery. Appl Nanotechnol Drug Deliv. https://doi.org/10.5772/58459

  • Catuogno S, Esposito CL, de Franciscis V (2016) Aptamer-mediated targeted delivery of therapeutics: an update. Pharm Basel Switz 9:69

    Google Scholar 

  • Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  CAS  PubMed  Google Scholar 

  • Charoenphol P, Bermudez H (2014) Aptamer-targeted DNA nanostructures for therapeutic delivery. Mol Pharm 11:1721–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chertok B et al (2008) Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29:487–496

    Article  CAS  PubMed  Google Scholar 

  • Cortesi R, Esposito E, Luca G, Nastruzzi C (2002) Production of lipospheres as carriers for bioactive compounds. Biomaterials 23:2283–2294

    Article  CAS  PubMed  Google Scholar 

  • Cui B et al (2007) One at a time, live tracking of NGF axonal transport using quantum dots. Proc Natl Acad Sci U S A 104:13666–13671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3(2):133

    Article  PubMed  PubMed Central  Google Scholar 

  • Delehanty JB et al 2006 Self-assembled quantum dot-peptide bioconjugates for selective intracellular delivery. PubMed – NCBI. Available at: https://www.ncbi.nlm.nih.gov/pubmed/16848398. Accessed: 5th Jan 2019

  • Delehanty JB, Mattoussi H, Medintz IL (2009) Delivering quantum dots into cells: strategies, progress and remaining issues. Anal Bioanal Chem 393:1091–1105

    Article  CAS  PubMed  Google Scholar 

  • Ding M et al (2013) Toward the next-generation nanomedicines: design of multifunctional multiblock polyurethanes for effective cancer treatment. ACS Nano 7:1918–1928

    Article  CAS  PubMed  Google Scholar 

  • Ducry L, Stump B (2010) Antibody-drug conjugates: linking cytotoxic payloads to monoclonal antibodies. Bioconjug Chem 21:5–13

    Article  CAS  PubMed  Google Scholar 

  • Dunn GP et al (2012) Emerging insights into the molecular and cellular basis of glioblastoma. Genes Dev 26:756–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elbaz NM, Khalil IA, Abd-Rabou AA, El-Sherbiny IM (2016) Chitosan-based nano-in-microparticle carriers for enhanced oral delivery and anticancer activity of propolis. Int J Biol Macromol 92:254–269

    Article  CAS  PubMed  Google Scholar 

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  PubMed  Google Scholar 

  • Fakhoury JJ, McLaughlin CK, Edwardson TW, Conway JW, Sleiman HF (2014) Development and characterization of gene silencing DNA cages. Biomacromolecules 15:276–282

    Article  CAS  PubMed  Google Scholar 

  • Fayad L et al (2008) Safety and clinical activity of the anti-CD22 Immunoconjugate InotuzumabOzogamicin (CMC-544) in combination with rituximab in follicular lymphoma or diffuse large B-cell lymphoma: preliminary report of a phase 1/2 study. Blood 112:266–266

    Google Scholar 

  • Feng M, Zhong LX, Zhan ZY, Huang ZH, Xiong JP (2017) Enhanced antitumor efficacy of resveratrol-loaded nanocapsules in colon cancer cells: physicochemical and biological characterization. Eur Rev Med Pharmacol Sci 21(2):375–382

    CAS  PubMed  Google Scholar 

  • Gattenlöhner S et al (2010) A human recombinant autoantibody-based immunotoxin specific for the fetal acetylcholine receptor inhibits rhabdomyosarcoma growth in vitro and in a murine transplantation model. J Biomed Biotechnol 2010:187621–187621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldenberg DM (2007) Radiolabelled monoclonal antibodies in the treatment of metastatic cancer. Curr Oncol 14:39–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu F et al (2008) Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc Natl Acad Sci U S A 105:2586–2591

    Article  PubMed  PubMed Central  Google Scholar 

  • He J et al (2010) Targeting prostate cancer cells in vivo using a rapidly internalizing novel human single-chain antibody fragment. J Nucl Med Off Publ Soc Nucl Med 51:427–432

    Google Scholar 

  • He K et al (2017) The efficacy assessments of alkylating drugs induced by nano-Fe3O4/CA for curing breast and hepatic cancer. Spectrochim Acta A Mol Biomol Spectrosc 173:82–86

    Article  CAS  PubMed  Google Scholar 

  • Heitner T et al (2001) Selection of cell binding and internalizing epidermal growth factor receptor antibodies from a phage display library. J Immunol Methods 248:17–30

    Article  CAS  PubMed  Google Scholar 

  • Hu R et al (2014) DNA nanoflowers for multiplexed cellular imaging and traceable targeted drug delivery. Angew Chem Int Ed Eng 53:5821–5826

    Article  CAS  Google Scholar 

  • Hua X-W, Bao Y-W, Wu F-G (2018) Fluorescent carbon quantum dots with intrinsic nucleolus-targeting capability for nucleolus imaging and enhanced cytosolic and nuclear drug delivery. ACS Appl Mater Interfaces 10:10664–10677

    Article  CAS  PubMed  Google Scholar 

  • Jabbari A, Sadeghian H (2012) Amphiphilic cyclodextrins, synthesis, utilities and application of molecular modeling in their design. Recent Adv Nov Drug Carr Syst. https://doi.org/10.5772/50220

  • Jain KK (ed) (2008) Drug delivery systems, vol 2. Humana press, Totowa

    Google Scholar 

  • Jensen SA et al (2013) Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci Transl Med 5:209ra152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Q et al (2012) DNA origami as a carrier for circumvention of drug resistance. J Am Chem Soc 134:13396–13403

    Article  CAS  PubMed  Google Scholar 

  • Johnson BK, Prud’homme RK (2003) Flash nanoprecipitation of organic actives and block copolymers using a confined impinging jets mixer. Aust J Chem 56:1021–1024

    Article  CAS  Google Scholar 

  • Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC (2012) Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 41:2971–3010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang WJ, Chae JR, Cho YL, Lee JD, Kim S (2009) Multiplex imaging of single tumor cells using quantum-dot-conjugated aptamers. Small Weinh Bergstr Ger 5:2519–2522

    Article  CAS  Google Scholar 

  • Kang T et al (2017) Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy. Biomaterials 136:98–114

    Article  CAS  PubMed  Google Scholar 

  • Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9:537–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikkeri R, Lepenies B, Adibekian A, Laurino P, Seeberger PH (2009) In vitro imaging and in vivo liver targeting with carbohydrate capped quantum dots. J Am Chem Soc 131:2110–2112

    Article  CAS  PubMed  Google Scholar 

  • Kim J-E, Park Y-J (2017) Paclitaxel-loaded hyaluronan solid nanoemulsions for enhanced treatment efficacy in ovarian cancer. Int J Nanomedicine 12:645. https://doi.org/10.2147/IJN.S124158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klostergaard J et al (2007) Magnetic vectoring of magnetically responsive nanoparticles within the murine peritoneum. J Magn Magn Mater 311:330–335

    Article  CAS  Google Scholar 

  • Klostergaard J, Bankson J, Woodward W, Gibson D, Seeney C (2010) Magnetically-responsive nanoparticles for vectored delivery of cancer therapeutics. AIP Conf Proc 1311:382–387

    Article  CAS  Google Scholar 

  • Klostranec JM, Chan WCW (2006) Quantum dots in biological and biomedical research: recent progress and present challenges. Adv Mater 18:1953–1964

    Article  CAS  Google Scholar 

  • Kotula JW et al (2012) Aptamer-mediated delivery of splice-switching oligonucleotides to the nuclei of cancer cells. Nucleic Acid Ther 22:187–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar CSSR, Mohammad F (2011) Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 63:789–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavik EB, Kuppermann BD, Humayun MS (2012) Drug delivery. In: Retina, 5th edn. Allen Institute for Artificial Intelligence, Seattle, pp 734–745. https://doi.org/10.1016/B978-1-4557-0737-9.00038-2

    Chapter  Google Scholar 

  • Lee N, Hyeon T (2012) Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev 41:2575–2589

    Article  CAS  PubMed  Google Scholar 

  • Lee H et al (2012) Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat Nanotechnol 7:389–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy-Nissenbaum E, Radovic-Moreno AF, Wang AZ, Langer R, Farokhzad OC (2008) Nanotechnology and aptamers: applications in drug delivery. Trends Biotechnol 26:442–449

    Article  CAS  PubMed  Google Scholar 

  • Lherm C, Müller RH, Puisieux F, Couvreur P (1992) Alkylcyanoacrylate drug carriers: II. Cytotoxicity of cyanoacrylate nanoparticles with different alkyl chain length. Int J Pharm 84:13–22

    Article  CAS  Google Scholar 

  • Liao W et al (2018) Fabrication of ultra-small WS2 quantum dots-coated periodic mesoporous organosilica nanoparticles for intracellular drug delivery and synergistic chemo-photothermal therapy. OncoTargetsTher 11:1949–1960

    Google Scholar 

  • Lidke DS et al (2004) Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat Biotechnol 22:198–203

    Article  CAS  PubMed  Google Scholar 

  • Lieleg O et al (2007) Specific integrin labeling in living cells using functionalized nanocrystals. Small Weinh Bergstr Ger 3:1560–1565

    Article  CAS  Google Scholar 

  • Liu W et al (2008) Compact biocompatible quantum dots functionalized for cellular imaging. J Am Chem Soc 130:1274–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundin J et al (2002) Phase II trial of subcutaneous anti-CD52 monoclonal antibody alemtuzumab (Campath-1H) as first-line treatment for patients with B-cell chronic lymphocytic leukemia (B-CLL). Blood 100:768–773

    Article  CAS  PubMed  Google Scholar 

  • Medintz IL et al 2005 Quantum dot bioconjugates for imaging, labelling and sensing. PubMed – NCBI. Available at: https://www.ncbi.nlm.nih.gov/pubmed/15928695. Accessed: 5th Jan 2019

  • Mok H, Zhang M (2013) Superparamagnetic iron oxide nanoparticle-based delivery systems for biotherapeutics. Expert Opin Drug Deliv 10:73–87

    Article  CAS  PubMed  Google Scholar 

  • Nahar S, Nayak AK, Ghosh A, Subudhi U, Maiti S (2017) Enhanced and synergistic downregulation of oncogenic miRNAs by self-assembled branched DNA. Nanoscale 10:195–202

    Article  CAS  PubMed  Google Scholar 

  • Nielsen UB et al (2002) Therapeutic efficacy of anti-ErbB2 immunoliposomes targeted by a phage antibody selected for cellular endocytosis. Biochim Biophys Acta 1591:109–118

    Article  CAS  PubMed  Google Scholar 

  • Oh JK, Park JM (2011) Iron oxide-based superparamagnetic polymeric nanomaterials: design, preparation, and biomedical application. Prog Polym Sci 36:168–189

    Article  CAS  Google Scholar 

  • Öztürk K, Esendağlı G, Gürbüz MU, Tülü M, Çalış S (2017) Effective targeting of gemcitabine to pancreatic cancer through PEG-cored Flt-1 antibody-conjugated dendrimers. Int J Pharm 517:157–167

    Article  CAS  PubMed  Google Scholar 

  • Park K (2014) Controlled drug delivery systems: past forward and future back. J Control Release Off 190:3–8

    Article  CAS  Google Scholar 

  • Pathak Y, Benita S (2012a) Antibody-mediated drug delivery systems: concepts, technology, and applications. Wiley, Hoboken

    Book  Google Scholar 

  • Pathak Y, Benita S (2012b) Antibody-mediated drug delivery systems: concepts, technology, and applications. Wiley, Hoboken

    Book  Google Scholar 

  • Patri AK, Majoros IJ, Baker JR (2002) Dendritic polymer macromolecular carriers for drug delivery. Curr Opin Chem Biol 6:466–471

    Article  CAS  PubMed  Google Scholar 

  • Prasad M et al (2018) Nanotherapeutics: an insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed Pharmacother 97:1521–1537

    Article  CAS  PubMed  Google Scholar 

  • Qian H et al (2017) Protecting microRNAs from RNase degradation with steric DNA nanostructures. Chem Sci 8:1062–1067

    Article  CAS  PubMed  Google Scholar 

  • Qiao R, Yang C, Gao M (2009) Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J Mater Chem 19:6274–6293

    Article  CAS  Google Scholar 

  • Ramakrishna D, Rao P (2011) Nanoparticles: is toxicity a concern? EJIFCC 22:92–101

    Google Scholar 

  • Rao PR, Diwan PV (1997) Permeability studies of cellulose acetate free films for transdermal use: influence of plasticizers. Pharm ActaHelv 72:47–51

    CAS  Google Scholar 

  • Singh R, Lillard JW (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith BR et al (2008) Real-time intravital imaging of RGD-quantum dot binding to luminal endothelium in mouse tumor neovasculature. Nano Lett 8:2599–2606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soundararajan S, Chen W, Spicer EK, Courtenay-Luck N, Fernandes DJ (2008) The nucleolin targeting aptamer AS1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells. Cancer Res 68:2358–2365

    Article  CAS  PubMed  Google Scholar 

  • Stacker SA, Achen MG, Jussila L, Baldwin ME, Alitalo K (2002) Lymphangiogenesis and cancer metastasis. Nat Rev Cancer 2:573–583

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Lee JSH, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun W et al (2015) Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew Chem Int Ed Eng 54:12029–12033

    Article  CAS  Google Scholar 

  • Susumu K et al (2007) Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands. J Am Chem Soc 129:13987–13996

    Article  CAS  PubMed  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  PubMed  Google Scholar 

  • Turturro F (2007) Denileukindiftitox: a biotherapeutic paradigm shift in the treatment of lymphoid-derived disorders. Expert Rev Anticancer Ther 7:11–17

    Article  CAS  PubMed  Google Scholar 

  • Varkouhi AK, Scholte M, Storm G, Haisma HJ (2011) Endosomal escape pathways for delivery of biologicals. J Control Release Off 151:220–228

    Article  CAS  Google Scholar 

  • Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62:284–304

    Article  CAS  PubMed  Google Scholar 

  • Wang AZ et al (2010) ChemoRad nanoparticles: a novel multifunctional nanoparticle platform for targeted delivery of concurrent chemoradiation. Nanomedicine (London) 5:361. https://doi.org/10.2217/nnm.10.6

    Article  CAS  Google Scholar 

  • Wanigasekara J, Witharana C (2016) Applications of nanotechnology in drug delivery and design-an insight. Curr Trends Biotechnol Pharm 10(1):78–91

    CAS  Google Scholar 

  • Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507

    Article  CAS  PubMed  Google Scholar 

  • Wen J, Tao W, Hao S, Iyer SP, Zu Y (2016) A unique aptamer-drug conjugate for targeted therapy of multiple myeloma. Leukemia 30:987–991

    Article  CAS  PubMed  Google Scholar 

  • Werner ME et al (2011) Folate-targeted nanoparticle delivery of chemo- and radiotherapeutics for the treatment of ovarian cancer peritoneal metastasis. Biomaterials 32:8548–8554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H (2012) Nanoparticles as drug delivery systems. Pharmacol Rep PR 64:1020–1037

    Article  CAS  PubMed  Google Scholar 

  • Wu C et al (2013) Building a multifunctional aptamer-based DNA nanoassembly for targeted cancer therapy. J Am Chem Soc 135:18644–18650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu W, Wu Z, Yu T, Jiang C, Kim W-S (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16:023501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang D et al (2016a) In vivo targeting of metastatic breast cancer via tumor vasculature-specific nano-graphene oxide. Biomaterials 104:361–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y et al (2016b) Near-infrared light-activated cancer cell targeting and drug delivery with aptamer-modified nanostructures. Nano Res 9:139–148

    Article  CAS  Google Scholar 

  • Younes A et al (2008) Objective responses in a phase I dose-escalation study of SGN-35, a novel antibody-drug conjugate (ADC) targeting CD30, in patients with relapsed or refractory Hodgkin lymphoma. J Clin Oncol 26:8526–8526

    Article  Google Scholar 

  • Yun YH, Lee BK, Park K (2015) Controlled drug delivery: historical perspective for the next generation. J Control Release 219:2–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaman MB, Baral TN, Zhang J, Whitfield D, Yu K (2009) Single-domain antibody functionalized CdSe/ZnS quantum dots for cellular imaging of cancer cells. J Phys Chem C 113:496–499

    Article  CAS  Google Scholar 

  • Zhang H et al (2009) Detection and downregulation of type I IGF receptor expression by antibody-conjugated quantum dots in breast cancer cells. Breast Cancer Res Treat 114:277–285

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q et al (2014) DNA origami as an in vivo drug delivery vehicle for cancer therapy. ACS Nano 8:6633–6643

    Article  CAS  PubMed  Google Scholar 

  • Zhang H et al (2015) A controllable aptamer-based self-assembled DNA dendrimer for high affinity targeting, bioimaging and drug delivery. Sci Rep 5:10099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y-X et al (2012) DNA origami delivery system for cancer therapy with tunable release properties. ACS Nano 6:8684–8691

    Article  CAS  PubMed  Google Scholar 

  • Zheng J et al (2006) Cellular imaging and surface marker labeling of hematopoietic cells using quantum dot bioconjugates. Lab Hematol Off Publ Int Soc Lab Hematol 12:94–98

    CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by a DST-INSPIRE (DST/INSPIRE/04/2013/000836) research grant from the Department of Science and Technology, Government of India. The authors would also like to thank the Institute Research Project (IRP) scheme for individual faculty provided by the Indian Institute of Technology (Banaras Hindu University) for the development of state-of-the-art facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Kumar Mahto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sahi, A.K., Verma, P., Pallawi, Singh, K., Mahto, S.K. (2019). Advancements and New Technologies in Drug Delivery System. In: Paul, S. (eds) Biomedical Engineering and its Applications in Healthcare. Springer, Singapore. https://doi.org/10.1007/978-981-13-3705-5_28

Download citation

Publish with us

Policies and ethics