Skip to main content

Biodegradable Composite Scaffold for Bone Tissue Regeneration

  • Chapter
Biomedical Engineering and its Applications in Healthcare
  • 1644 Accesses

Abstract

At micro-architectural viewpoint, human bone is composed of polymer ceramic composite having similar mechanical characteristics that can be tailored by synthetic composite materials. To mimic the properties of bone, research on bone substituted analogous biomaterials was initiated by reinforcing active biomolecules within the matrices of biocompatible polymers to formulate suitable bone analogous. The major advantages of the composites over conventional homogeneous materials like metals, ceramics, and polymers are superior mechanical, biological, and other physical properties that can be matched with the requirements of particular applications. Modern technology has not been able to provide a suitable bone substitute that replaces autogenous bone. The availability and suitability of conventional autogenous or homogeneous prosthetic elements to repair severe bone trauma or large defects caused by various bone diseases are critically limited; as a result, profound interest concentrated on application of man-made polymeric composite materials as biodegradable scaffold, which would provide support and a symptomatic, long-term function within the body or in contact with body fluid. In tissue engineering, biodegradable scaffolds play a crucial role, where matrix degradation and tissue in growth are of immense phenomenon for decisive performance of tissue-scaffold system during regenerative process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbarzadeh R, Yousefi AM (2014) Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 102(6):1304–1315

    Article  CAS  PubMed  Google Scholar 

  • Ambrose CG, Hartline BE, Clanton TO, Lowe WR, McGarvey WC (2015) Polymers in orthopaedic surgery. In: Advanced polymers in medicine. Springer, Berlin/Heidelberg, pp 129–145

    Google Scholar 

  • Ami R, Amini, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40(5):363–408

    Article  Google Scholar 

  • Amin Y, Wauthle R, Böttger AJ, Schrooten J, Weinans H, Zadpoor AA (2014) Crystal structure and nanotopographical features on the surface of heat-treated and anodized porous titanium biomaterials produced using selective laser melting. Appl Surf Sci 290:287–294

    Article  CAS  Google Scholar 

  • Annalia A, Luciana G (2014) Natural and synthetic biodegradable polymers: different scaffolds for cell expansion and tissue formation. Int J Artif Organs 37(3):187–205

    Google Scholar 

  • Asti A, Gioglio L (2014) Natural and synthetic biodegradable polymers: different scaffolds for cell expansion and tissue formation. Int J Artif Organs 37(3):187–205

    PubMed  Google Scholar 

  • Balani K, Narayan R, Agarwal A (2015) Surface engineering and modification for biomedical applications. In Balani K, Verma V, Agaqrwal A, Narayan R (Eds) Biosurfaces: materials science and engineering perspective, John Wiley, pp 201–238

    Google Scholar 

  • BaoLin G, Ma PX (2014) Synthetic biodegradable functional polymers for tissue engineering: a brief review. Sci China Chem 57(4):490–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basile MA, d’Ayala GG, Malinconico M, Laurienzo P, Coudane J, Nottelet B, Ragione FD, Oliva A (2015) Functionalized PCL/HA nanocomposites as microporous membranes for bone regeneration. Mater Sci Eng C Mater Biol Appl 48:457–468

    Article  CAS  PubMed  Google Scholar 

  • Bastioli C (2005) Handbook of biodegradable polymers. Rapra Technology, Shawbury/Shrewsbury/Shropshire. ISBN 9781847350442

    Google Scholar 

  • Bertazzo S, Bertran CA (2006) Morphological and dimensional characteristics of bone mineral crystals. Bioceramics 3(10):309–311

    Google Scholar 

  • Bhattacharjee A, Bansal M (2005) Critical review collagen structure: the madras triple helix and the current scenario. IUBMB Life 57:161–172

    Article  CAS  PubMed  Google Scholar 

  • Bitar KN, Zakhem E (2014) Design strategies of biodegradable scaffolds for tissue regeneration. Biomed Eng Comput Biol 6:13–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blokhuis TJ (2014) Bioresorbable bone graft substitutes. In: Bone substitute biomaterials, pp 80–92, Elsevier

    Google Scholar 

  • Borden M, Attawia M, Khan Y, El-Amin SF, Laurencin CT (2004) Tissue-engineered bone formation in vivo using a novel sintered polymeric microsphere matrix. J Bone Joint Surg Br 86:1200–1208

    Article  CAS  PubMed  Google Scholar 

  • Boschetti F, Tomei AA, Turri S, Swartz MA, Levi M (2008) Design, fabrication, and characterization of a composite scaffold for bone tissue engineering. Int J Artif Organs 31(8):697–707

    Article  CAS  PubMed  Google Scholar 

  • Bret DU, Lakshmi SN, Cato TL (2011) Biomedical applications of biodegradable polymers. Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys 49(12):832–864

    Article  CAS  Google Scholar 

  • Brodsky B, Persikov AV (2005) Molecular structure of thecollagen triple helix. Adv Protein Chem 70:301–339

    Article  CAS  PubMed  Google Scholar 

  • Buehler MJ (2006) Nature designs tough collagen: explaining the nanostructure of collagen fibrils. PNAS 103(33):12285–12290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardiel JJ, Zhao Y, Kim J-H, Chung J-H, Shen AQ, Shen AQ (2014) Electro-conductive porous scaffold with single-walled carbon nanotubes in wormlike micellar networks. Carbon 80:203–212

    Article  CAS  Google Scholar 

  • Chan BP, Leong KW (2008) Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 17(S4):467–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23:1273–1335

    Article  CAS  Google Scholar 

  • Chanlalit C, Shukla DR, Fitzsimmons JS, An KN, O’Driscoll SW (2012) Stress shielding around radial head prostheses. J Hand Surg 37:2118–2125

    Article  Google Scholar 

  • Chun-Jen L, Chin-Fu C, Jui-Hsiang C, Shu-Fung C, Yu-Ju L, Ken-Yuan C (2002) Fabrication of porous biodegradable polymer scaffolds using a solvent merging/particulate leaching method. J Biomed Mater Res Part A 59(4):676–681

    Article  CAS  Google Scholar 

  • Cox SC, Thornby JA, Gibbons GJ, Williams MA, Mallick KK (2015) 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater Sci Eng C 47:237–247

    Article  CAS  Google Scholar 

  • Cunniffe G, O’Brien F (2011) Collagen scaffolds for orthopedic regenerative medicine. J Miner Met Mater Soc 63(4):66–73

    Article  CAS  Google Scholar 

  • Currey JD (2002) The structure of bone tissue. In: Bones: structure and mechanics. Princeton University Press, Princeton, pp 12–14

    Google Scholar 

  • Dahlin RL, Kasper FK, Mikos AG (2011) Polymeric nanofibers in tissue engineering. Tissue Eng B Rev 17:349–364

    Article  CAS  Google Scholar 

  • De Santis R, Gloria A, Russo T, Amora UD, Zeppetelli S, Tampieri A, Herrmannsdorfer T, Ambrosio L (2011) A route toward the development of 3D magnetic scaffolds with tailored mechanical and morphological properties for hard tissue regeneration: preliminary study. Virtual Phys Prototyping 6(4):189–195

    Article  Google Scholar 

  • Dinopoulos H, Dimitriou R, Giannoudis PV (2012) Bone graft substitutes: what are the options? Surgeon 10(4):230–239

    Article  PubMed  Google Scholar 

  • Dumic-Cule I, Pecina M, Jelic M, Jankolija M, Popek I, Grgurevic L, Vukicevic S (2015) Biological aspects of segmental bone defects management. Int Orthop 39:1005–1011

    Article  PubMed  Google Scholar 

  • Edwards SL, Werkmeister JA, Ramshaw JA (2009) Carbon nanotubes in scaffolds for tissue engineering. Expert Rev Med Devices 6(5):499–505

    Article  CAS  PubMed  Google Scholar 

  • Fabrizio M, Lorenzo N, DianaChicon P, Massimo I (2011) New biomaterials for bone regeneration. Clin Cases Miner Bone Metab 8(1):21–24

    Google Scholar 

  • Francesca G, Alessandro S, Giuseppe MP (2013) The biomaterialist’s task: scaffold biomaterials and fabrication technologies. Joints 1(3):130–137

    Article  Google Scholar 

  • Fu Q, Saiz E, Rahaman MN, Tomsia AP (2011) Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng C Mater Biol 31(7):1245–1256

    Article  CAS  Google Scholar 

  • Galois L, Mainard D, Delagoutte J (2002) Beta-tricalcium phosphate ceramic as a bone substitute in orthopaedic surgery. Int Orthop 26:109–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gloria A, Russo T, D’Amora U, Zeppetelli S, D’Alessandro T, Sandri M, Bañobre-López M, Piñeiro-Redondo Y, Uhlarz M, Tampieri A, Rivas J, Herrmannsdörfer T, Dediu VA, Ambrosio L, DeSantis R (2013) Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering. J R Soc Interface 10(80):8–33

    Article  CAS  Google Scholar 

  • Goldberg M, Kulkarni AB, Young M, Boskey A (2011) Dentin: structure, composition and mineralization-the role of dentin ECM in dentin formation and mineralization. Front Biosci (Elite Ed) 3:711–735

    Article  Google Scholar 

  • Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 5:1–16

    Article  CAS  PubMed  Google Scholar 

  • Haase K, Rouhi G (2013) Prediction of stress shielding around an orthopedic screw. Using stress and strain energy density as mechanical stimuli. Comput Biol Med 43:1748–1757

    Article  PubMed  Google Scholar 

  • Haigang GU, Zhilian Y, Bramasta N, Leong WS, Tan JP (2010) Control of invitro neural differentiation of mesenchymal stem cells in 3D macroporous, cellulosic hydrogels. Regen Med 5:245–253

    Article  Google Scholar 

  • Hench LL (2013) Chronology of bioactive glass development and clinical applications. Sci Res 3:67–73

    Google Scholar 

  • Huayu Tian, Zhaohui Tang, Xiuli Zhuang, Xuesi Chen, Xiabin Jing (2012) Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci 37(2):237–280

    Article  CAS  Google Scholar 

  • Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543

    Article  CAS  PubMed  Google Scholar 

  • Iftikhar A, Nazia J (2016) Polyhydroxyalkanoates: current applications in the medical field. Front Biol 11(1):19–27

    Article  CAS  Google Scholar 

  • Ikada Y (2006) Challenges in tissue engineering. J R Soc Interface 3:589–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jack KS, Velayudhan S, Luckman P, Trau M, Grøndahl L, Cooper-White J (2009) The fabrication and characterization of biodegradable HA/PHBV nanoparticle-polymer composite scaffolds. Acta Biomater 5(7):2657–2667

    Article  CAS  PubMed  Google Scholar 

  • Khan R, Khan MH (2013) Use of collagen as a biomaterial: an update. J Indian Soc Periodontol 17(4):539–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnan V, Lakshmi T (2013) Bioglass: a novel biocompatible innovation. J Adv Pharm Technol Res 4(2):78–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lalwani G, Gopalan A, D’Agati M, Sankaran JS, Judex S, Qin YX, Sitharaman B (2015) Porous three-dimensional carbon nanotube scaffolds for tissue engineering. J Biomed Mater Res 103(10):3212–3225

    Article  CAS  Google Scholar 

  • Laurin M, Canoville A, Germain D (2011) Bone microanatomy and lifestyle: a descriptive approach. Comptes Rendus Palevol 10(5–6):381–402

    Article  Google Scholar 

  • Lee DW et al (2006) Strong adhesion and cohesion of chitosan in aqueous solutions. Langmuir 29(46):14222–14229

    Article  CAS  Google Scholar 

  • Lee JW, Kim JY, Kim JY, Cho D-W, Cho D-W (2010a) Solid free-form fabrication technology and its application to bone tissue engineering. Int J Stem Cells 3(2):85–95

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee K-W, Wang S, Dadsetan M, Yaszemski MJ, Lu L (2010b) Enhanced cell ingrowth and proliferation through three-dimensional nanocomposite scaffolds with controlled pore structures. Biomacromolecules 11(3):682–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lendlein A, Sisson A (eds) (2011) Handbook of biodegradable polymers : synthesis, characterization and applications. Weinheim, Wiley-VCH

    Google Scholar 

  • Levrero F, Margetts L et al (2016) Evaluating the macroscopic yield behaviour of trabecular bone using a nonlinear homogenisation approach. J Mech Behav Biomed Mater 61:384–396

    Article  Google Scholar 

  • Li X, Cui R, Sun L, Aifantis KE, Fan Y, Feng Q, Cui F, Watari F (2014) 3D-printed biopolymers for tissue engineering application. Int J Polym Sci 2014:1–13

    Google Scholar 

  • Lim LT, Auras R, Rubino M (2008) Processing technologies for poly (lactic acid). Prog Polym Sci 33(8):820–852

    Article  CAS  Google Scholar 

  • Liu B, Lun DX (2012) Current application of β-tricalcium phosphate composites in orthopaedics. Orthop Surg 4:139–144

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma PX (2004) Scaffolds for tissue fabrication. Mater Today 7(5):30–40

    Article  CAS  Google Scholar 

  • Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel) 3(3):1377–1397

    Article  CAS  Google Scholar 

  • Maria Fátima Vaz, Helena CanhÐo, JoÐo Eurico Fonseca (2011) Bone: a composite natural material. In: Pavla (ed) Advances in composite materials – analysis of natural and man-made materials. Intech, Croatia

    Google Scholar 

  • Masina M (2011) Use of an absorbent non-woven fabric dressing based on benzyl ester of hyaluronic acid (Hyallofill®-F) in the treatment of difficult to heal ulcers of the lower extremities. Acta Vulcanol 9(4):173–181

    Google Scholar 

  • Massera J, Fagerlund S, Hupa L, Hupa M (2012) Crystallization mechanism of bioactive glasses 45S5 and S53P4. J Am Ceram Soc 95(2):607–613

    Article  CAS  Google Scholar 

  • Middleton J, Tipton A (1998) Synthetic biodegradable polymers as medical devices. Med Plast Biomater Mag 5(2):30–39

    Google Scholar 

  • Mikael PE, Nukavarapu SP (2011) Functionalized carbon nanotube composite scaffolds for bone tissue engineering: prospects and progress. J Biomater Tissue Eng 1(1):76–85

    Article  Google Scholar 

  • Miranda P, Saiz E, Gryn K, Tomsia AP (2006) Sintering and robocasting of β-tricalcium phosphate scaffolds for orthopaedic applications. Acta Biomater 2:457–466

    Article  PubMed  Google Scholar 

  • Mirza SB, Dunlop DG, Panesar SS, Naqvi SG, Gangoo S, Salih S (2010) Basic science considerations in primary total hip replacement arthroplasty. Open Orthop J 4:169–180

    Article  PubMed  PubMed Central  Google Scholar 

  • Niu XF, Li XM, Liu HF (2012) Homogeneous chitosan/poly(L-lactide) composite scaffolds prepared by emulsion freeze-drying. J Biomater Sci Polym Ed 23:391–404

    Article  CAS  PubMed  Google Scholar 

  • Oh Y, Islam MF (2015) Preformed Nanoporous carbon nanotube scaffold-based multifunctional polymer composites. ACS Nano 9(4):4103–4110

    Article  CAS  PubMed  Google Scholar 

  • Oonishi H (1991) Orthopaedic applications of hydroxyapatite. Biomaterials 12(2):171–178

    Article  CAS  PubMed  Google Scholar 

  • Osborn JF, Newesely H (1980) The material science of calcium phosphate ceramics. Biomaterials 1(2):108–111

    Article  CAS  PubMed  Google Scholar 

  • Peck M, Dusserre N, McAllister TN, L’Heureux N (2011) Tissue engineering by self- assembly. Mater Today 14:218–224

    Article  CAS  Google Scholar 

  • PeitlFilho O, LaTorre GP, Hench LL (1996) Effect of crystallization on apatite-layer formation of bioactive glass 45S5. J Biomed Mater Res 30(4):509–514

    Article  CAS  Google Scholar 

  • Persson M, Lorite GS, Kokkonen HE, Cho SW, Lehenkari PP, Skrifvars M, Tuukkanen J (2014) Effect of bioactive extruded PLA/HA composite films on focal adhesion formation of preosteoblastic cells. Colloids Surf B Biointerfaces 121:409–416

    Article  CAS  PubMed  Google Scholar 

  • Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE (2014) Scaffold design for bone regeneration. J Nanosci Nanotechnol 14(1):15–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prakasam M, Locs J, Salma-Ancane K, Loca D, Largeteau A, Berzina-Cimdina L (2015) Fabrication, properties and applications of dense hydroxyapatite: a review. J Funct Biomater 6(4):1099–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raeisdasteh Hokmabad V, Davaran S, Ramazani A, Salehi R (2017) Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering. J Biomater Sci Polym Ed 28(16):1797–1825

    Article  CAS  PubMed  Google Scholar 

  • Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB (2011) Bioactive glass in tissue engineering. Acta Biomater 7(6):2355–2373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahaman MN, Liu X, Bal BS, Day DE, Bi L, Bonewald LF (2012) Bioactive glass in bone tissue engineering. Biomater Sci 237:73–82

    CAS  Google Scholar 

  • Ratner BD (2004) Biomaterials science: an introduction to materials in medicine. Academic Press, Waltham

    Google Scholar 

  • Raynaud S, Champion E, Bernache-Assollant D, Thomas P (2002) Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials 23(4):1065–1072

    Article  CAS  PubMed  Google Scholar 

  • Razak SIA, Sharif N, Rahman W (2012) Biodegradable polymers and their bone applications: a review. Int J Basic Appl Sci 12:31–49

    Google Scholar 

  • Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18):3413–3431

    Article  CAS  PubMed  Google Scholar 

  • Sahoo NG, Pan YZ, Li L, He CB (2013) Nanocomposites for bone tissue regeneration. Nanomedicine 8(4):639–653

    Article  CAS  PubMed  Google Scholar 

  • Samavedi S, Whittington AR, Goldstein AS (2013) Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater 9(9):8037–8045

    Article  CAS  PubMed  Google Scholar 

  • Saska S, Mendes LS, Gaspar AMM, de Oliveira Capote TS (2015) Bone substitute materials in implant dentistry. Implant Dent 2:158–167

    Google Scholar 

  • Schaschke C, Audic JL (Editorial) (2014) Biodegradable materials. Int J Mol Sci 15:21468–21475

    Article  Google Scholar 

  • Si-Chong Chen, Zhi-Xuan Zhou, Yu-Zhong Wang, Xiu-Li Wang, Ke-Ke Yang (2006) A novel biodegradable poly(p-dioxanone)-grafted poly(vinyl alcohol) copolymer with a controllable in vitro degradation. Polymer 47(1):32–36

    Article  CAS  Google Scholar 

  • Simamora P, Chern W (2006) Poly-L-lactic acid: an overview. J Drugs Dermatol 5(5):436–440

    PubMed  Google Scholar 

  • Singh AB, Majumdar S (2014) The composite of hydroxyapatite with collagen as a bone grafting material. J Adv Med Dent Sci Res 2:53–55

    Article  Google Scholar 

  • Singh M, Sandhu B, Scurto A, Berkland C, Detamore MS (2010) Microsphere-based scaffolds for cartilage tissue engineering: using subcritical CO(2) as a sintering agent. Acta Biomater 6(1):137–143

    Article  CAS  PubMed  Google Scholar 

  • Sokolsky PM, Agashi K, Olaye A, Shakesheff K, Domb AJ (2007) Polymer carriers for drug delivery in tissue engineering. Adv Drug Deliv Rev 59:187–206

    Article  CAS  Google Scholar 

  • Sumner DR (2015) Long-term implant fixation and stress-shielding in total hip replacement. J Biomech 48:797–800

    Article  CAS  PubMed  Google Scholar 

  • Tamimi F, Sheikh Z, Barralet J (2012) Dicalcium phosphate cements: Brushite and monetite. Acta Biomater 8:474–487

    Article  CAS  PubMed  Google Scholar 

  • Tan L, Yu X, Wan P, Yang K (2013) Biodegradable materials for bone repairs: a review. J Mater Sci Technol 29:503–513

    Article  CAS  Google Scholar 

  • Tian H, Tang Z, Zhuang X, Chen X, Jing X (2012) Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci 37(2):237–280

    Article  CAS  Google Scholar 

  • Udeni Gunathilake TMS, Ching YC, Chuah CH, Sabariah JJ, Pai-Chen L (2016) Fabrication of porous materials from natural/synthetic biopolymers and their composites. Materials 9(12):991

    Article  CAS  Google Scholar 

  • Ulrike G, Wegst K, Bai H, Eduardo S, Antoni PT, Ritchie RO (2015) Bioinspired structural materials. Nat Mater 14:23–36

    Article  CAS  Google Scholar 

  • Valappil SP, Misra SK, Boccaccini AR, Roy I (2006) Biomedical applications of polyhydroxyalkanoates: an overview of animal testing and in vivo responses. Expert Rev Med Devices 3(6):853–868

    Article  CAS  PubMed  Google Scholar 

  • Vallittu PK, Närhi TO, Hupa L (2015) Fiber glass–bioactive glass composite for bone replacing and bone anchoring implants. Dent Mater 31:371–381

    Article  CAS  PubMed  Google Scholar 

  • Vindigni V, Cortivo R, Iacobellis L, Abatangelo G, Zavan B (2009) Hyaluronan benzyl ester as a scaffold for tissue engineering. Int J Mol Sci 10(7):2972–2985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Jiang XL, Peng SW, Guo XY, Shang GG, Chen JC, Wu Q, Chen GQ (2013) Induced apoptosis of osteoblasts proliferating on polyhydroxyalkanoates. Biomaterials 34(15):3737–3746

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Wang Y, Chen GQ (2009) Medical application of microbial biopolyesters polyhydroxyalkanoates artificial cells. Blood Substitutes Biotechnol 37(1):1–12

    Article  CAS  Google Scholar 

  • Xiao L, Wang B, Yang G, Gauthier M (2012) Poly (lactic acid)-based biomaterials: synthesis, modification and applications. In: Biomedical science, engineering and technology, pp 247–282. InTech, Croatia

    Google Scholar 

  • Yamamuro T (2012) Clinical applications of bioactive glass-ceramics. New Mater Technol Healthc 1:1–97

    Google Scholar 

  • Zanello LP, Zhao B, Hu H, Haddon RC (2006) Bone cell proliferation on carbon nanotubes. Nano Lett 6(3):562–567

    Article  CAS  PubMed  Google Scholar 

  • Zeeshan S, Shariq N, Zohaib K, Vivek V, Haroon R, Michael G (2015) Biodegradable materials for bone repair and tissue engineering applications. Materials (Basel) 8(9):5744–5794

    Article  CAS  Google Scholar 

  • Zhao J, Han W, Chen H (2011) Preparation, structure and crystallinity of chitosan nano-fibers by a solid-liquid phase separation technique. Carbohydr Polym 83:1541–1546

    Article  CAS  Google Scholar 

  • Zhao Q, Wang S, Kong M, Geng W, Li RK, Song C, Kong D (2012) Phase morphology, physical properties, and biodegradation behavior of novel PLA/PHBHHx blends. J Biomed Mater Res B Appl Biomater 100(1):23–31

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Sun H, Geng H, Liu D, Zhang X, Cai Q, Yang X (2016a) Dual functional polylactide–hydroxyapatite nanocomposites for bone regeneration with nano-silver being loaded via reductive polydopamine. RSC Adv 6:91349–91360

    Article  CAS  Google Scholar 

  • Zhu W, Holmes B, Glazer RI, Zhang LG (2016b) 3D printed nanocomposite matrix for the study of breast cancer bone metastasis. Nanomedicine 12(1):69–79

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Bag, S. (2019). Biodegradable Composite Scaffold for Bone Tissue Regeneration. In: Paul, S. (eds) Biomedical Engineering and its Applications in Healthcare. Springer, Singapore. https://doi.org/10.1007/978-981-13-3705-5_27

Download citation

Publish with us

Policies and ethics