Skip to main content

The Molecular Basis of Retinal Ganglion Cell Death in Glaucoma

  • Chapter
  • First Online:
Intraocular and Intracranial Pressure Gradient in Glaucoma

Part of the book series: Advances in Visual Science and Eye Diseases ((AVSED,volume 1))

Abstract

All biochemical activities accompany with energy exchange [1]. Fabulously, the oxygen consumption per tissue weight in the retina is one of the highest in the human body. Therefore, retinal tissue is heavily dependent on mitochondria for energy supplement. Retinal ganglion cells (RGCs) have been estimated to have more mitochondria than any other neurons in the central nervous system (CNS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science. 1993;262(5134):689–95.

    Article  CAS  Google Scholar 

  2. Osborne NN. Mitochondria: their role in ganglion cell death and survival in primary open angle glaucoma. Exp Eye Res. 2010;90(6):750–7.

    Article  CAS  Google Scholar 

  3. Osborne NN, del Olmo-Aguado S. Maintenance of retinal ganglion cell mitochondrial functions as a neuroprotective strategy in glaucoma. Curr Opin Pharmacol. 2013;13(1):16–22.

    Article  CAS  Google Scholar 

  4. Morgan JE. Circulation and axonal transport in the optic nerve. Eye (Lond). 2004;18(11):1089–95.

    Article  CAS  Google Scholar 

  5. Kong GY, Van Bergen NJ, Trounce IA, Crowston JG. Mitochondrial dysfunction and glaucoma. J Glaucoma. 2009;18(2):93–100.

    Article  Google Scholar 

  6. Lee S, Van Bergen NJ, Kong GY, Chrysostomou V, Waugh HS, O’Neill EC, Crowston JG, Trounce IA. Mitochondrial dysfunction in glaucoma and emerging bioenergetic therapies. Exp Eye Res. 2011;93(2):204–12.

    Google Scholar 

  7. Hollander H, Makarov F, Stefani FH, Stone J. Evidence of constriction of optic nerve axons at the lamina cribrosa in the normotensive eye in humans and other mammals. Ophthalmic Res. 1995;27(5):296–309.

    Article  CAS  Google Scholar 

  8. Wang L, Dong J, Cull G, Fortune B, Cioffi GA. Varicosities of intraretinal ganglion cell axons in human and nonhuman primates. Invest Ophthalmol Vis Sci. 2003;44(1):2–9.

    Article  Google Scholar 

  9. Baltan S, Inman DM, Danilov CA, Morrison RS, Calkins DJ, Horner PJ. Metabolic vulnerability disposes retinal ganglion cell axons to dysfunction in a model of glaucomatous degeneration. J Neurosci. 2010;30(16):5644–52.

    Article  CAS  Google Scholar 

  10. Ju WK, Kim KY, Lindsey JD, Angert M, Duong-Polk KX, Scott RT, Kim JJ, Kukhmazov I, Ellisman MH, Perkins GA, et al. Intraocular pressure elevation induces mitochondrial fission and triggers OPA1 release in glaucomatous optic nerve. Invest Ophthalmol Vis Sci. 2008;49(11):4903–11.

    Article  Google Scholar 

  11. Band LR, Hall CL, Richardson G, Jensen OE, Siggers JH, Foss AJ. Intracellular flow in optic nerve axons: a mechanism for cell death in glaucoma. Invest Ophthalmol Vis Sci. 2009;50(8):3750–8.

    Article  Google Scholar 

  12. Zhang Z, Liu D, Jonas JB, Wu S, Kwong JM, Zhang J, Liu Q, Li L, Lu Q, Yang D, et al. Axonal transport in the rat optic nerve following short-term reduction in cerebrospinal fluid pressure or elevation in intraocular pressure. Invest Ophthalmol Vis Sci. 2015;56(8):4257–66.

    Article  Google Scholar 

  13. Zhang Z, Wu S, Jonas JB, Zhang J, Liu K, Lu Q, Wang N. Dynein, kinesin and morphological changes in optic nerve axons in a rat model with cerebrospinal fluid pressure reduction: the Beijing Intracranial and Intraocular Pressure (iCOP) study. Acta Ophthalmol. 2015;94(3):266–75.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningli Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Z., Wang, N. (2019). The Molecular Basis of Retinal Ganglion Cell Death in Glaucoma. In: Wang, N. (eds) Intraocular and Intracranial Pressure Gradient in Glaucoma. Advances in Visual Science and Eye Diseases, vol 1. Springer, Singapore. https://doi.org/10.1007/978-981-13-2137-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2137-5_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2136-8

  • Online ISBN: 978-981-13-2137-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics