Skip to main content

Brain-Machine Interface-Based Rat-Robot Behavior Control

  • Chapter
  • First Online:
Neural Interface: Frontiers and Applications

Abstract

Brain-machine interface (BMI) provides a bidirectional pathway between the brain and external facilities. The machine-to-brain pathway makes it possible to send artificial information back into the biological brain, interfering neural activities and generating sensations. The idea of the BMI-assisted bio-robotic animal system is accomplished by stimulations on specific sites of the nervous system. With the technology of BMI, animals’ locomotion behavior can be precisely controlled as robots, which made the animal turning into bio-robot. In this chapter, we reviewed our lab works focused on rat-robot navigation. The principles of rat-robot system have been briefly described first, including the target brain sites chosen for locomotion control and the design of remote control system. Some methodological advances made by optogenetic technologies for better modulation control have then been introduced. Besides, we also introduced our implementation of “mind-controlled” rat navigation system. Moreover, we have presented our efforts made on combining biological intelligence with artificial intelligence, with developments of automatic control and training system assisted with images or voices inputs. We concluded this chapter by discussing further developments to acquire environmental information as well as promising applications with write-in BMIs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fritsch G, Hitzig E (1870) Uber die elektrische Erregbarkeit des Grossihirns. Arch Anat Physiol Wissen Med 37:300–332

    Google Scholar 

  2. Gildenberg PL (2005) Evolution of neuromodulation. Stereotact Funct Neurosurg 83(2–3):71–79

    Article  PubMed  Google Scholar 

  3. Owen SL, Green AL, Stein JF et al (2006) Deep brain stimulation for the alleviation of post-stroke neuropathic pain. Pain 120(1–2):202–206

    Article  PubMed  Google Scholar 

  4. Marchand S, Kupers RC, Bushnell MC et al (2003) Analgesic and placebo effects of thalamic stimulation. Pain 105(3):481–488

    Article  PubMed  Google Scholar 

  5. Krack P, Batir A, Van Blercom N et al (2003) Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson's disease. N Engl J Med 349(20):1925–1934

    Article  CAS  PubMed  Google Scholar 

  6. Bittar RG, Burn SC, Bain PG et al (2005) Deep brain stimulation for movement disorders and pain. J Clin Neurosci 12(4):457–463

    Article  PubMed  Google Scholar 

  7. Wilson BS, Dorman MF (2008) Cochlear implants: a remarkable past and a brilliant future. Hear Res 242(1–2):3–21

    Article  PubMed  PubMed Central  Google Scholar 

  8. Shannon RV (2012) Advances in auditory prostheses. Curr Opin Neurol 25(1):61–66

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chow AY, Chow VY, Packo KH et al (2004) The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophthalmol 122(4):460–469

    Article  PubMed  Google Scholar 

  10. Yanai D, Weiland JD, Mahadevappa M et al (2007) Visual performance using a retinal prosthesis in three subjects with retinitis pigmentosa. Am J Ophthalmol 143(5):820–827

    Article  PubMed  Google Scholar 

  11. Romo R, Hernandez A, Zainos A et al (2000) Sensing without touching: psychophysical performance based on cortical microstimulation. Neuron 26(1):273–278

    Article  CAS  PubMed  Google Scholar 

  12. Houweling AR, Brecht M (2007) Behavioural report of single neuron stimulation in somatosensory cortex. Nature 451(7174):65–68

    Article  PubMed  CAS  Google Scholar 

  13. Flesher SN, Collinger JL, Foldes ST et al (2016) Intracortical microstimulation of human somatosensory cortex. Sci Transl Med 8(361):141r–361r

    Article  Google Scholar 

  14. Holzer R, Shimoyama I (1997) Locomotion control of a bio-robotic system via electric stimulation. In: Intelligent robots and systems, 1997. IROS’97., Proceedings of the 1997 IEEE/RSJ international conference on IEEE, pp 1514–1519

    Google Scholar 

  15. Bozkurt A, Gilmour R, Stern D et al (2008) MEMS based bioelectronic neuromuscular interfaces for insect cyborg flight control. In: Proceedings IEEE micro electro mechanical systems IEEE, p 160

    Google Scholar 

  16. Bozkurt A, Gilmour RF Jr, Lal A (2009) Balloon-assisted flight of radio-controlled insect biobots. IEEE Trans Biomed Eng 56(9):2304–2307

    Article  PubMed  Google Scholar 

  17. Sato H, Berry CW, Peeri Y et al (2009) Remote radio control of insect flight. Front Integr Neurosci 3:24

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bao L, Zheng N, Zhao H et al (2011) Flight control of tethered honeybees using neural electrical stimulation. In: International IEEE EMBS conference on neural engineering IEEE, pp 558–561

    Google Scholar 

  19. Talwar SK, Xu S, Hawley ES et al (2002) Direct brain stimulation enables training of complex behaviors in freely roaming animals. In: Proceedings of annual international conference of the IEEE engineering in medicine and biology society IEEE, pp 2076–2077

    Google Scholar 

  20. Gomes W, Perez D, Catipovic J (2006) Autonomous shark tag with neural reading and stimulation capability for open-ocean experiments. EOS Trans Am Geophys Union 87:36

    Google Scholar 

  21. Brown S (2006) Stealth sharks to patrol the high seas. New Sci 189(2541):30–31

    Google Scholar 

  22. Wang W, Guo C, Sun J et al (2009) Locomotion elicited by electrical stimulation in the midbrain of the Lizard Gekko gecko. In: Budiyono A, Riyanto B, Joelianto E (eds) Studies in computational intelligence. Springer, Berlin, p 145

    Google Scholar 

  23. Talwar SK, Xu S, Hawley ES et al (2002) Rat navigation guided by remote control. Nature 417(6884):37–38

    Article  CAS  PubMed  Google Scholar 

  24. Hermer-Vazquez L, Hermer-Vazquez R, Rybinnik I et al (2005) Rapid learning and flexible memory in "habit" tasks in rats trained with brain stimulation reward. Physiol Behav 84(5):753–759

    Article  CAS  PubMed  Google Scholar 

  25. Doty RW (1969) Electrical stimulation of the brain in behavioral context. Annu Rev Psychol 20:289–320

    Article  CAS  PubMed  Google Scholar 

  26. Feng Z, Chen W, Ye X et al (2007) A remote control training system for rat navigation in complicated environment. J Zheijang Univ Sci A 8(2):323–330

    Article  Google Scholar 

  27. Francis JT, Xu S, Chapin JK (2008) Proprioceptive and cutaneous representations in the rat ventral Posterolateral thalamus. J Neurophysiol 99(5):2291–2304

    Article  PubMed  Google Scholar 

  28. Xu K, Zhang J, Zhou H et al (2016) A novel turning behavior control method for rat-robot through the stimulation of ventral posteromedial thalamic nucleus. Behav Brain Res 298(Pt B):150–157

    Article  PubMed  Google Scholar 

  29. Zhang J, Zhang S, Yu C et al (2018) Intrinsic optical imaging study on cortical responses to electrical stimulation in ventral posterior medial nucleus of thalamus. Brain Res 1684:40–49

    Article  CAS  PubMed  Google Scholar 

  30. Zhu Y, Xu K, Xu C et al (2016) PET mapping for brain-computer Interface stimulation of the Ventroposterior medial nucleus of the thalamus in rats with implanted electrodes. J Nucl Med 57(7):1141–1145

    Article  CAS  PubMed  Google Scholar 

  31. Keay KA, Bandler R (2001) Parallel circuits mediating distinct emotional coping reactions to different types of stress. Neurosci Biobehav Rev 25(7):669–678

    Article  CAS  PubMed  Google Scholar 

  32. Brandao ML, Troncoso AC, Silva M et al (2003) The relevance of neuronal substrates of defense in the midbrain tectum to anxiety and stress: empirical and conceptual considerations. Eur J Pharmacol 463(1–3):225–233

    Article  CAS  PubMed  Google Scholar 

  33. Lin J, Yu C, Jia J et al (2010) Using dlPAG-evoked immobile behavior in animal-robotics navigation. 2010 5th international conference on computer science & education, (iccse 2010) - hefei, china, 1295–1298

    Google Scholar 

  34. Huai R, Yang J and Wang H et al (2009) A new robo-animals navigation method guided by the remote control. In: Shi R, Fu WJ, Wang YQ, Wang HB(eds) International conference on biomedical engineering and informatics. IEEE, pp 1170–1173

    Google Scholar 

  35. Koo B, Koh CS, Park HY et al (2017) Manipulation of rat movement via Nigrostriatal stimulation controlled by human visually evoked potentials. Sci Rep 7(1):2340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Ye X, Wang P, Liu J et al (2008) A portable telemetry system for brain stimulation and neuronal activity recording in freely behaving small animals. J Neurosci Methods 174(2):186–193

    Article  PubMed  Google Scholar 

  37. Guo S, Chen S, Zhang Q et al (2014) Optogenetic activation of the excitatory neurons expressing CaMKIIFC; in the ventral tegmental area upregulates the locomotor activity of free behaving rats. Biomed Res Int 2014:687469

    PubMed  PubMed Central  Google Scholar 

  38. Guo S, Zhou H, Zhang J et al (2013) A multi-electrode array coupled with fiberoptic for deep-brain optical neuromodulation and electrical recording. In: Engineering in medicine and biology society (EMBC), 2013 35th annual international conference of the IEEE, pp 2752–2755

    Google Scholar 

  39. Aravanis AM, Wang LP, Zhang F et al (2007) An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng 4(3):S143–S156

    Article  PubMed  Google Scholar 

  40. Wang J, Wagner F, Borton DA et al (2012) Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications. J Neural Eng 9(1):16001

    Article  Google Scholar 

  41. Chen S, Zhou H, Guo S et al (2015) Optogenetics based rat-robot control: optical stimulation encodes “stop” and “escape” commands. Ann Biomed Eng 43(8):1851–1864

    Article  PubMed  Google Scholar 

  42. Guo S, Zhou H, Wang Y et al (2014) A rat-robot control system based on optogenetics. In: Ren L, Wang H, Dai Z (eds) Applied mechanics and materials, pp 848–852

    Google Scholar 

  43. Min BK, Marzelli MJ, Yoo SS (2010) Neuroimaging-based approaches in the brain-computer interface. Trends Biotechnol 28(11):552–560

    Article  CAS  PubMed  Google Scholar 

  44. Pais-Vieira M, Lebedev M, Kunicki C et al (2013) A brain-to-brain interface for real-time sharing of sensorimotor information. Sci Rep 3:1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Deadwyler SA, Berger TW, Sweatt AJ et al (2013) Donor/recipient enhancement of memory in rat hippocampus. Front Syst Neurosci 7:120

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pais-Vieira M, Chiuffa G, Lebedev M et al (2015) Building an organic computing device with multiple interconnected brains. Sci Rep 5:11869

    Article  PubMed  PubMed Central  Google Scholar 

  47. Grau C, Ginhoux R, Riera A et al (2014) Conscious brain-to-brain communication in humans using non-invasive technologies. PLoS One 9(8):e105225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Rao RP, Stocco A, Bryan M et al (2014) A direct brain-to-brain interface in humans. PLoS One 9(11):e111332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Yoo SS, Kim H, Filandrianos E et al (2013) Non-invasive brain-to-brain interface (BBI): establishing functional links between two brains. PLoS One 8(4):e60410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang S, Yuan S, Huang L, Zheng X, Wu W, Xu K, Pan G (2019) Human mind control of rat cyborg’s continuous locomotion with wireless brain-to-brain interface. Sci Rep 9:1321. https://doi.org/10.1038/s41598-018-36885-0

  51. Martinez-Leon J, Cano-Izquierdo J, Ibarrola J (2016) Are low cost brain computer Interface headsets ready for motor imagery applications? Expert Syst Appl 49:136–144

    Article  Google Scholar 

  52. Zhang Y, Sun C, Zheng N, et al (2010) An Automatic Control System for Ratbot Navigation[C]// 2010 IEEE/ACM International Conference on Green Computing and Communications & 2010 IEEE/ACM International Conference on Cyber, Physical and Social Computing. IEEE Computer Society, 2010, Hangzhou, China

    Google Scholar 

  53. Sun C, Zheng N, Zhang X et al (2011) An automatic control model for rat-robot. In: Engineering in medicine and biology society, EMBC, 2011 Annual international conference of the IEEE, Boston, USA

    Google Scholar 

  54. Sun C, Zheng N, Zhang X et al (2013) Automatic navigation for rat-robots with Modeling of the human guidance. J Bionic Eng 10(1):46–56

    Article  Google Scholar 

  55. Whishaw IQ, Kolb B (2004) The behavior of the laboratory rat: a handbook with tests. Oxford University Press, Oxford

    Book  Google Scholar 

  56. Hull CL, Spence KW (1938) “Correction” vs “non-correction” method of trial-and-error learning in rats. J Comp Psychol 25(1):127–145

    Article  Google Scholar 

  57. Sun C, Zhang X, Zheng N et al (2012) Bio-robots automatic navigation with electrical reward stimulation. Engineering in medicine and biology society (EMBC), 2012 annual international conference of the IEEE,San Diego, California, USA

    Google Scholar 

  58. Zhang C, Sun C, Gao L et al (2013) Bio-robots automatic navigation with graded electric reward stimulation based on reinforcement learning. Conf Proc IEEE Eng Med Biol Soc 2013:6901–6904

    Google Scholar 

  59. Wu Z, Yang Y, Xia B et al (2014) Speech interaction with a rat. Chin Sci Bull 59(28):3579–3584

    Article  Google Scholar 

  60. Wang Y, Lu M, Wu Z et al (2015) Visual Cue-guided rat cyborg for automatic navigation. IEEE Comput Intel Mag 10(2):42–52

    Article  Google Scholar 

  61. Song W, Semework M (2015) Tactile representation in somatosensory thalamus (VPL) and cortex (S1) of awake primate and the plasticity induced by VPL neuroprosthetic stimulation. Brain Res 1625:301–313

    Article  CAS  PubMed  Google Scholar 

  62. Yoo SS, Bystritsky A, Lee JH et al (2011) Focused ultrasound modulates region-specific brain activity. NeuroImage 56(3):1267–1275

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kedi Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, J. et al. (2019). Brain-Machine Interface-Based Rat-Robot Behavior Control. In: Zheng, X. (eds) Neural Interface: Frontiers and Applications. Advances in Experimental Medicine and Biology, vol 1101. Springer, Singapore. https://doi.org/10.1007/978-981-13-2050-7_5

Download citation

Publish with us

Policies and ethics