Skip to main content

Caffeoylquinic Acids

  • Living reference work entry
  • First Online:
  • 392 Accesses

Abstract

Caffeoylquinic acids (CQAs) are a large family of phenylpropanoids (chemically esters) found in large amounts in coffee beans but typically occur in many other edible plants, and as such, they belong to the most widespread polyphenols in plant kingdom. They are also associated with significant health benefits resulting from the consumption of beverages such as coffee and yerba maté as well as some popular vegetables such as globe artichoke or endive. Also, many medicinal herbs owe their properties to their CQA content. Here, we focused on the importance of these compounds for functional properties of healthy foodstuff, summarizing such well-studied aspects as bioavailability, in vitro and in vivo pharmacological effects, and potential for lifestyle disease prevention and management. The chemical diversity and analytical approaches are also outlined.

From the literature review, it is concluded that CQAs count as the most essential healthy constituents of various foods and beverages and should be included in characterization of edible consumer products. At the same time, one should remember that caution is necessary in claiming unfounded properties to cure diseases. Therefore, more research is necessary, especially on human subjects, as well as further development of affordable and reliable analytical methods in an ultimate goal to understand their distribution, diversity, and function.

This is a preview of subscription content, log in via an institution.

References

  • Abdel Motaal A, Ezzat SM, Tadros MG, El-Askary HI (2016) In vivo anti-inflammatory activity of caffeoylquinic acid derivatives from Solidago virgaurea in rats. Pharm Biol 54:2864–2870. https://doi.org/10.1080/13880209.2016.1190381

    Article  CAS  PubMed  Google Scholar 

  • Abrankó L, Clifford MN (2017) An unambiguous nomenclature for the acyl-quinic acids commonly known as chlorogenic acids. J Agric Food Chem 65(18):3602–3608. https://doi.org/10.1021/acs.jafc.7b00729

    Article  CAS  PubMed  Google Scholar 

  • Ahrens MJ, Thompson DL (2013) Effect of emulin on blood glucose in type 2 diabetics. J Med Food 16:1–6

    Article  CAS  Google Scholar 

  • Alonso-Castro AJ, Miranda-Torres AC, Gonzalez-Chavez MM, Salazar-Olivo LA (2008) Cecropia obtusifolia Bertol and its active compound, chlorogenic acid, stimulate 2-NBDglucose uptake in both insulin-sensitive and insulin-resistant 3T3 adipocytes. J Ethnopharmacol 120:458–464

    Article  CAS  PubMed  Google Scholar 

  • Alonso-Salces RM, Serra F, Remero F, Heberger K (2009) Botanical and geographical characterization of green coffee (Coffea arabica and Coffea canephora): chemometric evaluation of phenolic and methylxanthine contents. J Agric Food Chem 57:4224–4235. https://doi.org/10.1021/jf8037117

    Article  CAS  PubMed  Google Scholar 

  • Antonio AG, Moraes RSM, Perrone D, Maia LC, Santos KRN, Iório NLP, Farah A (2010) Species, roasting degree and decaffeination influence the antibacterial activity of coffee against Streptococcus mutans. Food Chem 118:782–788. https://doi.org/10.1016/j.foodchem.2009.05.063

    Article  CAS  Google Scholar 

  • Aviram M, Rosenblat M, Bisgaier CL, Newton RS, Primo-Parmo SL, La Du BN (1998) Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase. J Clin Investig 101:1581–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azuma K, Ippoushi K, Nakayama M, Ito H, Higashio H, Terao J (2000) Absorption of chlorogenic acid and caffeic acid in rats after oral administration. J Agric Food Chem 48:5496–5500. https://doi.org/10.1007/s11101-007-9077-x

    Article  CAS  PubMed  Google Scholar 

  • Baeza G, Sarriá B, Bravo L, Mateos R (2016) Exhaustive qualitative LC-DAD-MSn analysis of Arabica green coffee beans: cinnamoyl-glycosides and cinnamoylshikimic acids as new polyphenols in green coffee. J Agric Food Chem 64:9663–9674. https://doi.org/10.1021/acs.jafc.6b04022

    Article  CAS  PubMed  Google Scholar 

  • Basnet P, Matsushige K, Hase K, Kadota S, Namba T (1996) Four di-O-caffeoyl quinic acid derivatives from propolis. Potent hepatoprotective activity in experimental liver injury models. Biol Pharm Bull 19(11):1479–1484

    Article  CAS  PubMed  Google Scholar 

  • Bassoli BK, Cassolla P, Borba-Murad GR, Constantin J, Salgueiro-Pagadigorria CL, Bazotte RB, da Silva RS, de Souza HM (2008) Chlorogenic acid reduces the plasma glucose peak in the oral glucose tolerance test: effects on hepatic glucose release and glycaemia. Cell Biochem Funct 26:320–328

    Article  CAS  PubMed  Google Scholar 

  • Bidel S, Hu G, Jousilahti P, Antikainen R, Pukkala E, Hakulinen T, Tuomilehto J (2010) Coffee consumption and risk of colorectal cancer. Eur J Clin Nutr 64:917–923

    Article  CAS  PubMed  Google Scholar 

  • Boettler U, Sommerfeld K, Volz N, Pahlke G, Teller N, Somoza V, Lang R, Hofmann T, Marko D (2011) Coffee constituents as modulators of Nrf2 nuclear translocation and ARE (EpRE)-dependent gene expression. J Nutr Biochem 22:426–440. https://doi.org/10.1016/j.jnutbio.2010.03.011

    Article  CAS  PubMed  Google Scholar 

  • Borges G, Lean ME, Roberts SA, Crozier A (2013) Bioavailability of dietary (poly)phenols: a study with ileostomists to discriminate between absorption in small and large intestine. Food Funct 4(5):754–762. https://doi.org/10.1039/c3fo60024f

    Article  CAS  PubMed  Google Scholar 

  • Budryn G, Nebesny E, Oracz J (2015) Correlation between the stability of chlorogenic acids, antioxidant activity and acrylamide content in coffee beans roasted in different conditions. Int J Food Prop 18(2):290–302. https://doi.org/10.1080/10942912.2013.805769

    Article  CAS  Google Scholar 

  • Bułdak RJ, Hejmo T, Osowski M, Bułdak Ł, Kukla M, Polaniak R, Birkner E (2018) The impact of coffee and its selected bioactive compounds on the development and progression of colorectal cancer in vivo and in vitro. Molecules 23(12):E3309. https://doi.org/10.3390/molecules23123309

    Article  CAS  PubMed  Google Scholar 

  • Bundy R, Walker AF, Middleton RW, Wallis C, Simpson HC (2008) Artichoke leaf extract (Cynara scolymus) reduces plasma cholesterol in otherwise healthy hypercholesterolemic adults: a randomized, double blind placebo controlled trial. Phytomedicine 15(9):668–675

    Article  PubMed  Google Scholar 

  • Cao X, Xiao H, Zhang Y, Zou L, Chu Y, Chu X (2010) 1, 5-Dicaffeoylquinic acid-mediated glutathione synthesis through activation of Nrf2 protects against OGD/reperfusion-induced oxidative stress in astrocytes. Brain Res 1347:142–148

    Article  CAS  PubMed  Google Scholar 

  • Cha JW, Piao MJ, Kim KC, Yao CW, Zheng J, Kim SM, Hyun CL, Ahn YS, Hyun JW (2014) The polyphenol chlorogenic acid attenuates UVB-mediated oxidative stress in human HaCaT keratinocytes. Biomol Ther 22:136–142

    Article  CAS  Google Scholar 

  • Cho AS, Jeon SM, Kim MJ, Yeo J, Seo KI, Choi MS, Lee MK (2010) Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem Toxicol 48:937–943

    Article  CAS  PubMed  Google Scholar 

  • Cimanga K, De Bruyne T, Apers S, Pieters L, Totté J, Kambu K, Tona L, Bakana P, Van Ufford LQ, Beukelman C, Labadie R, Vlietinck AJ (1999) Complement-inhibiting constituents of Bridelia ferruginea stem bark. Planta Med 65:213–217. https://doi.org/10.1055/s-1999-14059

    Article  CAS  PubMed  Google Scholar 

  • Clifford MN (2000) Chlorogenic acids and other cinnamates – nature, occurrence, dietary burden, absorption and metabolism. J Sci Food Agric 80:1033–1043

    Article  CAS  Google Scholar 

  • Clifford MN (2017) Some notes on the chlorogenic acids. Part 4. Botanical distribution of the chlorogenic acids version. Researchgate. https://doi.org/10.13140/RG.2.2.23428.53126

  • Clifford MN, Wu W, Kirkpatrick J, Kuhnert N (2007) Profiling the chlorogenic acids and other caffeic acid derivatives of herbal chrysanthemum by LC-MSn. J Agric Food Chem 55(3):929–936

    Article  CAS  PubMed  Google Scholar 

  • Clifford MN, Kirkpatrick J, Kuhnert N, Roozendaal H, Salgado PR (2008) LC-MSn analysis of the cis isomers of chlorogenic acids. Food Chem 106:379–385. https://doi.org/10.1016/j.foodchem.2007.05.081

    Article  CAS  Google Scholar 

  • Clifford MN, Jaganath IB, Ludwig IA, Crozier A (2017) Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity. Nat Prod Rep 34(12):1391–1421. https://doi.org/10.1039/c7np00030h

    Article  CAS  PubMed  Google Scholar 

  • Corrao G, Zambon A, Bagnardi V, D'Amicis A, Klatsky A (2001) Coffee, caffeine, and the risk of liver cirrhosis. Ann Epidem 11(7):458–465. https://doi.org/10.1016/S1047-2797(01)00223-X

    Article  CAS  Google Scholar 

  • Crupi P, Bleve G, Tufariello M, Corbo F, Clodoveo ML, Tarricone L (2018) Comprehensive identification and quantification of chlorogenic acids in sweet cherry by tandem mass spectrometry techniques. J Food Compos Anal 73:103. https://doi.org/10.1016/j.jfca.2018.06.013

    Article  CAS  Google Scholar 

  • Dada FA, Oyeleye SI, Ogunsuyi OB, Olasehinde TA, Adefegha SA, Oboh G, Boligon AA (2017) Phenolic constituents and modulatory effects of raffia palm leaf (Raphia hookeri) extract on carbohydrate hydrolyzing enzymes linked to type-2 diabetes. J Tradit Complement Med 7(4):494–500. https://doi.org/10.1016/j.jtcme.2017.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  • Damy T, Kirsch M, Khouzami L, Caramelle P, Le Corvoisier P, Roudot-Thoraval F, Dubois-Randé JL, Hittinger L, Pavoine C, Pecker F (2009) Glutathione deficiency in cardiac patients is related to the functional status and structural cardiac abnormalities. PLoS One 4:e4871. https://doi.org/10.1371/journal.pone.0004871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danielsson J, Kangastupa P, Laatikainen T, Aalto M, Niemelä O (2013) Dose- and gender-dependent interactions between coffee consumption and serum GGT activity in alcohol consumers. Alcohol Alcohol 48(3):303–307. https://doi.org/10.1093/alcalc/agt017

    Article  CAS  PubMed  Google Scholar 

  • Dao L, Friedman M (1992) Chlorogenic acid content of fresh and processed potatoes determined by ultraviolet spectrophotometry. J Agric Food Chem 40:2152–2156

    Article  CAS  Google Scholar 

  • de Paulis T, Schmidt DE, Bruchey AK, Kirby MT, McDonald MP, Commers P, Lovinger DM, Martin PR (2002) Dicin- namoylquinides in roasted coffee inhibit the human adenosine transporter. Eur J Pharmacol 442(3):215–223

    Article  PubMed  Google Scholar 

  • De Rosso M, Flamini R, Colomban S, Navarini L (2018) UHPLC-ESI-QqTOF-MS/MS characterization of minor chlorogenic acids in roasted Coffea arabica from different geographical origin. J Mass Spectrom 53:763–771. https://doi.org/10.1002/jms.4263

    Article  CAS  PubMed  Google Scholar 

  • Dillenburg Meinhart A, Mateus Damin F, Caldeirão L, de Jesus Filho M, Cardoso da Silva L, da Silva Constant L, Teixeira Filho J, Wagner R, Teixeira Godoy H (2019) Chlorogenic and caffeic acids in 64 fruits consumed in Brazil. Food Chem 286:51–63. https://doi.org/10.1016/j.foodchem.2019.02.004

    Article  CAS  Google Scholar 

  • Ding M, Bhupathiraju SN, Chen M, van Dam RM, Hu FB (2014) Caffeinated and decaffeinated coffee consumption and risk of type 2 diabetes: a systematic review and a dose-response meta-analysis. Diabetes Care 37(2):569–586. https://doi.org/10.2337/dc13-1203

    Article  PubMed  PubMed Central  Google Scholar 

  • Duarte GS, Farah A (2011) Effect of simultaneous consumption of milk and coffee on chlorogenic acids’ bioavailability in humans. J Agric Food Chem 59:7925–7931. https://doi.org/10.1021/jf201906p

    Article  CAS  PubMed  Google Scholar 

  • DuPont MS, Bennett RN, Mellon FA, Williamson G (2002) Polyphenols from alcoholic apple cider are absorbed, metabolized and excreted by humans. J Nutr 132:72–175. https://doi.org/10.1093/jn/132.2.172

    Article  Google Scholar 

  • Egan PA, Adler LS, Irwin RE, Farrell IW, Palmer-Young EC, Stevenson PC (2018) Crop domestication alters floral reward chemistry with potential consequences for pollinator health. Front Plant Sci 9:1–14. https://doi.org/10.3389/fpls.2018.01357

    Article  Google Scholar 

  • Englisch W, Beckers C, Unkauf M, Ruepp M, Zinserling V (2000) Efficacy of artichoke dry extract in patients with hyperlipoproteinemia. Arzneimittelforschung 50(3):260–265

    CAS  PubMed  Google Scholar 

  • Farah A, de Paulis T, Trugo LC, Martin P (2005) Effect of roasting on the formation of chlorogenic acid lactones in coffee. J Agric Food Chem 53:1505–1513. https://doi.org/10.1021/jf048701t

    Article  CAS  PubMed  Google Scholar 

  • Farah A, Monteiro M, Donangelo CM, Lafay S (2008) Chlorogenic acids from green coffee extract are highly bioavailable in humans. J Nutr 138:2309–2315

    Article  CAS  PubMed  Google Scholar 

  • Feng RT, Lu YJ, Bowman LL, Qian Y, Castranova V, Ding M (2005) Inhibition of activator protein-1, NF-kappa B, and MAPKs and induction of phase 2 detoxifying enzyme activity by chlorogenic acid. J Biol Chem 280:27888–27895

    Article  CAS  PubMed  Google Scholar 

  • Fierascu I, Ungureanu C, Avramescu SM, Cimpeanu C, Georgescu MI, Fierascu RC, Ortan A, Sutan AN, Anuta V, Zanfirescu A, Dinu-Pirvu CE, Velescu BS (2018) Genoprotective, antioxidant, antifungal and anti-inflammatory evaluation of hydroalcoholic extract of wild-growing Juniperus communis L. (Cupressaceae) native to Romanian southern sub-Carpathian hills. BMC Complement Altern Med 18:3. https://doi.org/10.1186/s12906-017-2066-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fintelmann V, Menssen HG (1996) Artichoke leaf extract. Current knowledge concerning its efficacy as a lipid-reducer and antidyspeptic agent. Dtsch Apoth Ztg 136:1405–1414

    Google Scholar 

  • Frandsen JR, Narayanasamy P (2018) Neuroprotection through flavonoid: enhancement of the glyoxalase pathway. Redox Biol 14:465–473. https://doi.org/10.1016/j.redox.2017.10.015

    Article  CAS  PubMed  Google Scholar 

  • Gebhardt R (1996) Inhibition of hepatic cholesterol biosynthesis by artichoke leaf extracts is mainly due to luteolin. Cell Biol Toxicol 10:89–150

    Google Scholar 

  • Gebhardt R (1998) Inhibition of cholesterol biosynthesis in primary cultured rat hepatocytes by artichoke (Cynara scolymus L) extracts. J Pharmacol Exp Ther 286(3):1122–1128

    CAS  PubMed  Google Scholar 

  • Gebhardt R (2002) Inhibition of cholesterol biosynthesis in HepG2 cells by artichoke extracts is reinforced by glucosidase pretreatment. Phytother Res 16:368–372

    Article  CAS  PubMed  Google Scholar 

  • Gelatti U, Covolo L, Franceschini M, Pirali F, Tagger A, Ribero ML, Trevisi P, Martelli C, Nardi G, Donato F (2005) Coffee consumption reduces the risk of hepatocellular carcinoma independently of its aetiology: a case-control study. J Hepatol 42:528–534. https://doi.org/10.1016/j.jhep.2004.11.039

    Article  CAS  PubMed  Google Scholar 

  • Gray NE, Morré J, Kelley J, Maier CS, Stevens JF, Quinn JF, Soumyanath A (2014) Caffeoylquinic acids in Centella asiatica protect against amyloid-β toxicity. J Alzheimers Dis 40(2):359–373. https://doi.org/10.3233/JAD-131913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gugliucci A, Bastos DH (2009) Chlorogenic acid protects paraoxonase 1 activity in high density lipoprotein from inactivation caused by physiological concentrations of hypo- chlorite. Fitoterapia 80:138–142

    Article  CAS  PubMed  Google Scholar 

  • Gunter MJ (2017) Coffee drinking and mortality in 10 European countries: a multinational cohort study. Ann Intern Med 167(4):236–247. https://doi.org/10.7326/M16-2945

    Article  PubMed  PubMed Central  Google Scholar 

  • Hajjar DP, Gotto AM (2013) Biological relevance of inflammation and oxidative stress in the pathogenesis of arterial diseases. Am J Pathol 182:1474–1481. https://doi.org/10.1016/j.ajpath.2013.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidarian E, Soofiniya Y, Hajihosseini R (2013) The effect of aerial part of Cynara scolymus extract on the hyperlipidemia, plasma antioxidant capacity, and superoxide dismutase activity in diabetic rats. J Shahrekord Univ Med Sci 13(5):1–10

    Google Scholar 

  • Heitman E, Ingram DK (2017) Cognitive and neuroprotective effects of chlorogenic acid. Nutr Neurosci 20(1):32–39. https://doi.org/10.1179/1476830514Y.0000000146

    Article  CAS  PubMed  Google Scholar 

  • Heleno SA, Martins A, Queiroz MJRP, Ferreira ICFR (2015) Bioactivity of phenolic acids: metabolites versus parent compounds: a review. Food Chem 173:501–513

    Article  CAS  PubMed  Google Scholar 

  • Huang K, Liang XC, YL Z, He WY, Wang Z (2014) 5-Caffeoylquinic acid decreases diet-induced obesity in rats by modulating PPARα and LXRα transcription. J Sci Food Agric 95:1903–1910

    Article  PubMed  CAS  Google Scholar 

  • Hussain T, Tan B, Yin Y, Blachier F, Tossou MCB, Rahu N (2016) Oxidative stress and inflammation: what polyphenols can do for us? Oxidative Med Cell Longev 2016:7432797. https://doi.org/10.1155/2016/7432797

    Article  CAS  Google Scholar 

  • Huxley R, Lee CMY, Barzi F, Timmermeister L, Czernichow S, Perkovic V, Grobbee DE, Batty D, Woodward M (2009) Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 diabetes mellitus: a systematic review with meta-analysis. Arch Intern Med 169(22):2053–2063

    Article  PubMed  Google Scholar 

  • Ikeda M, Maki T, Yin G, Kawate H, Adachi M, Ohnaka K, Takayanagi R, Kono S (2010) Relation of coffee consumption and serum liver enzymes in Japanese men and women with reference to effect modification of alcohol use and body mass index. Scand J Clin Lab Invest 70:171–179. https://doi.org/10.3109/00365511003650165

    Article  CAS  PubMed  Google Scholar 

  • Iwai K, Narita Y, Fukunaga T, Nakagiri O, Kamiya T, Ikeguchi M, Kikuchi Y (2012) Study on the postprandial glucose responses to a chlorogenic acid-rich extract of decaffeinated green coffee beans in rats and healthy human subjects. Food Sci Technol Res 18:849–860

    Article  Google Scholar 

  • Jaiswal R, Sovdat T, Vivan F, Kuhnert N (2010) Profiling and characterization by LC-MSnof the chlorogenic acids and hydroxycinnamoylshikimate esters in maté (Ilex paraguariensis). J Agric Food Chem 58:5471–5484. https://doi.org/10.1021/jf904537z

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski H (2000) Calcium-dependent human serum homocysteine thiolactone hydrolase. A protective mechanism against protein N-homocysteinylation. J Biol Chem 275:3957–3962

    Article  CAS  PubMed  Google Scholar 

  • Jeon JS, Kim HT, Jeong IH, Hong SR, Oh MS, Park KH, Shim JH, Abd El-Aty AM (2017) Determination of chlorogenic acids and caffeine in homemade brewed coffee prepared under various conditions. J Chromatogr B 1064:115–123. https://doi.org/10.1016/j.jchromb.2017.08.041

    Article  CAS  Google Scholar 

  • Johnston KL, Clifford MN, Morgan LM (2003) Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine. Am J Clin Nutr 78:728–733

    Article  CAS  PubMed  Google Scholar 

  • Jung S, Kim MH, Park JH, Jeong Y, Ko KS (2017) Cellular antioxidant and anti-inflammatory effects of coffee extracts with different roasting levels. J Med Food 20(6):626–635. https://doi.org/10.1089/jmf.2017.3935. Epub 2017 June 5

    Article  CAS  PubMed  Google Scholar 

  • Kahle K, Kraus M, Richling E (2005) Polyphenol profiles of apple juices. Mol Nutr Food Res 49:797–806. https://doi.org/10.1002/mnfr.200500064

    Article  CAS  PubMed  Google Scholar 

  • Kalinowska M, Bielawska A, Lewandowska-Siwkiewicz H, Priebe W, Lewandowski W (2014) Apples: content of phenolic compounds vs. variety, part of apple and cultivation model, extraction of phenolic compounds, biological properties. Plant Physiol Biochem 84:169–188. https://doi.org/10.1016/j.plaphy.2014.09.006

    Article  CAS  PubMed  Google Scholar 

  • Kargutkar S, Brijesh S (2018) Anti-inflammatory evaluation and characterization of leaf extract of Ananas comosus. Inflammopharmacology 26:469–477. https://doi.org/10.1007/s10787-017-0379-3

    Article  CAS  PubMed  Google Scholar 

  • Kennedy OJ, Roderick P, Buchanan R, Fallowfield JA, Hayes PC, Parkes J (2017) Coffee, including caffeinated and decaffeinated coffee, and the risk of hepatocellular carcinoma: a systematic review and dose–response meta-analysis. BMJ Open 7:e013739. https://doi.org/10.1136/bmjopen-2016-013739

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim J, Lee S, Shim J, Kim HW, Kim J, Young JJ, Yang H, Park J, Choi SH, Yoon JH, Lee KW, Lee HJ (2012) Caffeinated coffee, decaffeinated coffee, and the phenolic phytochemical chlorogenic acid up-regulate NQO1 expression and prevent H2O2-induced apoptosis in primary cortical neurons. Neurochem Int 60:466–474

    Article  CAS  PubMed  Google Scholar 

  • Komes D, Belščak-Cvitanović A (2014) Effects of preparation techniques on the antioxidant capacity of coffee brews, Chapter 10. In: Preedy V (ed) Processing and impact on antioxidants in beverages. Academic/Elsevier, Amsterdam, pp 87–97. https://doi.org/10.1016/B978-0-12-404738-9.00010-6

    Chapter  Google Scholar 

  • Kraft K (1997) Artichoke leaf extract – recent findings reflecting effects on lipid metabolism, liver and gastrointestinal tracts. Phytomedicine 4:369–378

    Article  CAS  PubMed  Google Scholar 

  • Küskü-Kiraz Z, Mehmetcik G, Dogru-Abbasoglu S, Uysal M (2010) Artichoke leaf extract reduces oxidative stress and lipoprotein dyshomeostasis in rats fed on high cholesterol diet. Phytother Res 24:565–570

    PubMed  Google Scholar 

  • Kwon SH, Lee HK, Kim JA, Hong SI, Kim HC, Park YI, Lee CK, Lee YB, Lee SY, Jang CG (2010) Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. Eur J Pharmacol 649:210–217

    Article  CAS  PubMed  Google Scholar 

  • Lack E, Seidlitz H (2012) Commercial scale decaffeination of coffee and tea using supercritical CO2. In: King MB, Bott TR (eds) Extraction of natural products using near-critical solvents. Blackie Academic & Professional, Glasgow, pp 101–139. https://doi.org/10.1007/978-94-011-2138-5

    Chapter  Google Scholar 

  • Lafay S, Gil-Izquierdo A (2008) Bioavailability of phenolic acids. Phytochem Rev 7:301–311

    Article  CAS  Google Scholar 

  • Lafay S, Gil-Izquierdo A, Manach C, Morand C, Besson C, Scalbert A (2006) Chlorogenic acid is absorbed in its intact form in the stomach of rats. J Nutr 136:1192–1197

    Article  CAS  PubMed  Google Scholar 

  • Larsson SC, Wolk A (2007) Coffee consumption and risk of liver cancer: a meta-analysis. Gastroenterology 132:1740–1745. https://doi.org/10.1053/j.gastro.2007.03.044

    Article  PubMed  Google Scholar 

  • Lawal U, Leong SW, Shaari K, Ismail IS, Khatib A, Abas F (2017) α-Glucosidase inhibitory and antioxidant activities of different Ipomoea aquatica cultivars and LC–MS/MS profiling of the active cultivar. J Food Biochem 41:e12303. https://doi.org/10.1111/jfbc.12303

    Article  CAS  Google Scholar 

  • Lee KJ, Jeong HG (2007) Protective effects of kahweol and cafestol against hydrogen peroxide-induced oxidative stress and DNA damage. Toxicol Lett 173:80–87

    Article  CAS  PubMed  Google Scholar 

  • Li SY, Chang CQ, Ma FY, Yu CL (2009) Modulating effects of chlorogenic acid on lipids and glucose metabolism and expression of hepatic peroxisome proliferator-activated receptor-α in golden hamsters fed on high fat diet. Biomed Environ Sci 22:122–129

    Article  CAS  PubMed  Google Scholar 

  • Liang N, Kitts DD (2016) Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients 8:16. https://doi.org/10.3390/nu8010016

    Article  CAS  Google Scholar 

  • Lietti A (1977) Choleretic and cholesterol lowering properties of two artichoke extracts. Fitoterapia 48:153–158

    CAS  Google Scholar 

  • Liguori A, Hughes JR, Grass JA (1997) Absorption and subjective effects of caffeine from coffee, cola and capsules. Pharmacol Biochem Behav 58(3):721–726. https://doi.org/10.1016/S0091-3057(97)00003-8.

    Article  CAS  PubMed  Google Scholar 

  • Lima AR, Pereira RGFA, Abrahão SA, Zangeronimo MG, Paula FBA, Duarte SMS (2013) Effect of decaffeination of green and roasted coffees on the in vivo antioxidant activity and prevention of liver injury in rats. Braz J Pharm 23(3):506–512

    Article  Google Scholar 

  • Ludwig IA, Sanchez L, Caemmerer B, Kroh LW, de Peña MP, Cid C (2012) Extraction of coffee antioxidants: impact of brewing time and method. Food Res Int 48:57–64

    Article  CAS  Google Scholar 

  • Ludwig IA, Mena P, Calani L, Cid C, Del Rio D, Lean ME, Crozier A (2014) Variations in caffeine and chlorogenic acid contents of coffees: what are we drinking? Food Funct 5(8):1718–1726. https://doi.org/10.1039/c4fo00290c

    Article  CAS  PubMed  Google Scholar 

  • Lupattelli G, Marchesi S, Lombardini R, Roscini AR, Trinca F, Gemelli F, Vaudo G, Mannarino E (2004) Artichoke juice improves endothelial function in hyperlipemia. Life Sci 76(7):775–782

    Article  CAS  PubMed  Google Scholar 

  • Magielse J, Verlaet A, Breynaert A, Keenoy BM, Apers S, Pieters L, Hermans N (2014) Investigation of the in vivo antioxidative activity of Cynara scolymus (artichoke) leaf extract in the streptozotocin-induced diabetic rat. Mol Nutr Food Res 58(1):211–215. https://doi.org/10.1002/mnfr.201300282

    Article  CAS  PubMed  Google Scholar 

  • Mané C, Souquet JM, Ollé D, Verriés C, Véran F, Mazerolles G, Cheynier V, Fulcrand H (2007) Optimization of simultaneous flavanol, phenolic acid, and anthocyanin extraction from grapes using an experimental design: application to the characterization of champagne grape varieties. J Agric Food Chem 55:7224–7233. https://doi.org/10.1021/jf071301w

    Article  CAS  PubMed  Google Scholar 

  • Maruta Y, Kawabata J, Niki R (1995) Antioxidative caffeoylquinic acid derivatives in the roots of burdock (Arctium lappa L.). J Agric Food Chem 43:2592–2595. https://doi.org/10.1021/jf00058a007

    Article  CAS  Google Scholar 

  • McCarty MF (2005) A chlorogenic acid-induced increase in GLP-1 production may mediate the impact of heavy coffee consumption on diabetes risk. Med Hypotheses 64:848–853

    Article  CAS  PubMed  Google Scholar 

  • Mehmetçik G, Özdemirler G, Koçak-Toker N, Çevikbaş U, Uysal M (2008) Effect of pretreatment with artichoke extract on carbon tetrachloride-induced liver injury and oxidative stress. Exp Toxicol Pathol 60(6):475–480. https://doi.org/10.1016/j.etp.2008.04.014

    Article  PubMed  Google Scholar 

  • Metwally NS, Kholeif TE, Ghanem KZ, Farrag ARH, Ammar NM, AHZ A-H (2011) The protective effects of fish oil and artichoke on hepatocellular carcinoma in rats. Eur Rev Med Pharmacol Sci 15(12):1429–1444

    CAS  PubMed  Google Scholar 

  • Miccadei S, Di Venere D, Cardinali A, Romano F, Durazzo A, Foddai MS, Fraioli R, Mobarhan S, Maiani G (2008) Antioxidative and apoptotic properties of polyphenolic extracts from edible part of artichoke (Cynara scolymus L.) on cultured rat hepatocytes and on human hepatoma cells. Nutr Cancer 60(2):276–283. https://doi.org/10.1080/01635580801891583

    Article  CAS  PubMed  Google Scholar 

  • Miyamae Y, Kurisu M, Han J, Isoda H, Shigemori H (2011) Structure-activity relationship of caffeoylquinic acids on the accelerating activity on ATP production. Chem Pharm Bull (Tokyo) 59:502–507. https://doi.org/10.1248/cpb.59.502

    Article  CAS  Google Scholar 

  • Monteiro M, Farah A, Perrone D, Trugo LC, Donangelo C (2007) Chlorogenic acid compounds from coffee are differentially absorbed and metabolized in humans. J Nutr 137:2196–2201

    Article  CAS  PubMed  Google Scholar 

  • Montini M, Levoni P, Ongaro A, Pagani G (1975) Controlled application of cynarin in the treatment of hyperlipemic syndrome. Observations in 60 cases. Arzneimittelforschung 25(8):1311–1314

    CAS  PubMed  Google Scholar 

  • Moreira-Rodríguez M, Nair V, Benavides J, Cisneros-Zevallos L, Jacobo-Velázquez DA (2017) UVA, UVB light, and methyl jasmonate, alone or combined, redirect the biosynthesis of glucosinolates, phenolics, carotenoids, and chlorophylls in broccoli sprouts. Int J Mol Sci 18:1–20. https://doi.org/10.3390/ijms18112330

    Article  CAS  Google Scholar 

  • Muriel P, Arauz J (2010) Coffee and liver diseases. Fitoterapia 81(5):297–305. https://doi.org/10.1016/j.fitote.2009.10.003

    Article  CAS  PubMed  Google Scholar 

  • Nabavi SF, Tejada S, Setzer WN, Gortzi O, Sureda A, Braidy N, Daglia M, Manayi A, Nabavi SM (2017) Chlorogenic acid and mental diseases: from chemistry to medicine. Curr Neuropharmacol 15(4):471–479. https://doi.org/10.2174/1570159X14666160325120625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy Á, Abrankó L (2016) Profiling of hydroxycinnamoylquinic acids in plant extracts using in-source CID fragmentation. J Mass Spectrom 51:1130–1145. https://doi.org/10.1002/jms.3847

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa-Senda H, Ito H, Hosono S, Oze I, Tanaka H, Matsuo K (2017) Coffee consumption and the risk of colorectal cancer by anatomical subsite in Japan: results from the HERPACC studies. Int J Cancer 141:298–308

    Article  PubMed  CAS  Google Scholar 

  • Nardini M, Cirillo E, Natella F, Scaccini C (2002) Absorption of phenolic acids in humans after coffee consumption. J Agric Food Chem 50:5735–5741

    Article  CAS  PubMed  Google Scholar 

  • Naveed M, Hejazi V, Abbas M, Kamboh AA, Khan GJ, Shumzaid M, Ahmad F, Babazadeh D, Fang Fang X, Modarresi-Ghazani F, Wen Hua L, Xiao Hui Z (2018) Chlorogenic acid (CGA): a pharmacological review and call for further research. Biomed Pharmacother 97:67–74. https://doi.org/10.1016/j.biopha.2017.10.064

    Article  CAS  PubMed  Google Scholar 

  • Niseteo T, Komes D, Belščak-Cvitanović A, Horžić D, Budeč M (2012) Bioactive composition and antioxidant potential of different commonly consumed coffee brews affected by their preparation technique and milk addition. Food Chem 134(4):1870–1877. https://doi.org/10.1016/j.foodchem.2012.03.095

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa M, Izuhara R, Kaneko K, Fujimoto Y (1987) 3-Caffeoyl-4-sinapoylquinic acid, a novel lipoxygenase inhibitor from Gardeniae fructus. Chem Pharm Bull (Tokyo) 35:2133–2135. https://doi.org/10.1248/cpb.35.2133

    Article  CAS  Google Scholar 

  • Oboh G, Agunloye OM, Akinyemi AJ, Ademiluyi AO, Adefegha SA (2013) Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to Alzheimer’s disease and some pro-oxidant induced oxidative stress in rats’ brain-in vitro. Neurochem Res 38:413–419

    Article  CAS  PubMed  Google Scholar 

  • Ong KW, Hsu A, Tan BKH (2013) Antidiabetic and anti-lipidemic effects of chlorogenic acid are mediated by AMPK activation. Biochem Pharmacol 85:1341–1351

    Article  CAS  PubMed  Google Scholar 

  • Parr B, Bond JK, Minor T (2018) Vegetables and pulses outlook. Economic Research Service, USDA, Washington, DC. https://www.ers.usda.gov/webdocs/publications/88712/vgs-360.pdf?v=0

    Google Scholar 

  • Pashkow FJ (2011) Oxidative stress and inflammation in heart disease: do antioxidants have a role in treatment and/or prevention. Int J Inflamm 2011:514623. https://doi.org/10.4061/2011/514623

    Article  CAS  Google Scholar 

  • Pereira CG, Barreira L, Bijttebier S, Pieters L, Marques C, Santos TF, Rodrigues MJ, Varela J, Custódio L (2018) Health promoting potential of herbal teas and tinctures from Artemisia campestris subsp. maritima: from traditional remedies to prospective products. Sci Rep 8:1–13. https://doi.org/10.1038/s41598-018-23038-6

    Article  CAS  Google Scholar 

  • Perrone D, Donangelo R, Donangelo CM, Farah A (2010) Modeling weight loss and chlorogenic acids content in coffee during roasting. J Agric Food Chem 58(23):12238–12243

    Article  CAS  PubMed  Google Scholar 

  • Piazzon A, Vrhovsek U, Masuero D, Mattivi F, Mandoj F, Nardini M (2012) Antioxidant activity of phenolic acids and their metabolites: synthesis and antioxidant properties of the sulfate derivatives of ferulic and caffeic acids and of the acyl glucuronide of ferulic acid. J Agric Food Chemi 60:12312–12323

    Article  CAS  Google Scholar 

  • Pimpin L, Cortez-Pinto H, Negro F, Corbould E, Lazarus JV, Webber L, Sheron N, EASL HEPAHEALTH Steering Committee (2018) Burden of liver disease in Europe: epidemiology and analysis of risk factors to identify prevention policies. J Hepatol 69(3):718–735. https://doi.org/10.1016/j.jhep.2018.05.011

    Article  PubMed  Google Scholar 

  • Plumb GW, Garcia-Cones MT, Kroon PA, Rhodes M, Ridley S, Williams G (1999) Metabolism of chlorogenic acid by human plasma, liver, intestine and gut microflora. J Sci Food Agric 79:390–392

    Article  CAS  Google Scholar 

  • Prabhakar PK, Doble M (2009) Synergistic effect of phytochemicals in combination with hypoglycemic drugs on glucose uptake in myotubes. Phytomedicine 16:1119–1126

    Article  CAS  PubMed  Google Scholar 

  • Priftis A, Mitsiou D, Halabalaki M, Ntasi G, Stagos D, Skaltsounis LA, Kouretas D (2018) Roasting has a distinct effect on the antimutagenic activity of coffee varieties. Mutat Res 829–830:33–42. https://doi.org/10.1016/j.mrgentox.2018.03.003

    Article  CAS  Google Scholar 

  • Qiang Z, Lee SO, Ye Z, Wu X, Hendrich S (2012) Artichoke extract lowered plasma cholesterol and increased fecal bile acids in golden Syrian hamsters. Phytother Res 26(7):1048–1052. https://doi.org/10.1002/ptr.3698

    Article  CAS  PubMed  Google Scholar 

  • Rangboo V, Noroozi M, Zavoshy R, Rezadoost SA, Mohammadpoorasl A (2016) The effect of artichoke leaf extract on alanine aminotransferase and aspartate aminotransferase in the patients with nonalcoholic steatohepatitis. Int J Hepatol 2016:4030476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rebai O, Belkhir M, Sanchez-Gomez MV, Matute C, Fattouch S, Amri M (2017) Differential molecular targets for neuroprotective effect of chlorogenic acid and its related compounds against glutamate induced excitotoxicity and oxidative stress in rat cortical neurons. Neurochem Res 42(12):3559–3572. https://doi.org/10.1007/s11064-017-2403-9

    Article  CAS  PubMed  Google Scholar 

  • Rechner AR, Kuhnle G, Bremner P, Hubbard GP, Moore KP, Rice-Evans CA (2002) The metabolic fate of dietary polyphenols in humans. Free Radic Biol Med 33:220–235

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo L, Mackness B, Durrington PN, Hernandez A, Mackness MI (2001) Hydrolysis of platelet-activating factor by human serum paraoxonase. Biochem J 354:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez de Sotillo DV, Hadley M (2002) Chlorogenic acid modifies plasma and liver concentrations of: cholesterol, triacylglycerol, and minerals in (fa/fa) Zucker rats. J Nutr Biochem 13(12):717–726

    Article  CAS  PubMed  Google Scholar 

  • Rondanelli M, Giacosa A, Opizzi A, Faliva MA, Sala P, Perna S, Riva A, Morazzoni P, Bombardelli E (2013) Beneficial effects of artichoke leaf extract supplementation on increasing HDL-cholesterol in subjects with primary mild hypercholesterolaemia: a double-blind, randomized, placebo-controlled trial. Int J Food Sci Nutr 64(1):7–15

    Article  CAS  PubMed  Google Scholar 

  • Rondanelli M, Opizzi A, Faliva M, Sala P, Perna S, Riva A, Morazzoni P, Bombardelli E, Giacosa A (2014) Metabolic management in overweight subjects with naive impaired fasting glycaemia by means of a highly standardized extract from Cynara scolymus: a double-blind, placebo-controlled, randomized clinical trial. Phytother Res 28(1):33–41. https://doi.org/10.1002/ptr.4950

    Article  CAS  PubMed  Google Scholar 

  • Sakihama Y, Cohen MF, Grace SC, Yamasaki H (2002) Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology 177:67–80

    Article  CAS  PubMed  Google Scholar 

  • Santana-Gálvez J, Cisneros-Zevallos L, Jacobo-Velázquez DA (2017) Caffeoylquinic acids (CQAs): recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules 22:7–9. https://doi.org/10.3390/molecules22030358

    Article  CAS  Google Scholar 

  • Setiawan VW, Wilkens LR, Lu SC, Hernandez BY, Le Marchand L, Henderson BE (2015) Association of coffee intake with reduced incidence of liver cancer and death from chronic liver disease in the US multiethnic cohort. Gastroenterology 148:118–125. https://doi.org/10.1053/j.gastro.2014.10.005

    Article  CAS  PubMed  Google Scholar 

  • Setiawan VW, Porcel J, Wei P, Stram DO, Noureddin N, Lu SC, Le Marchand L, Noureddin M (2017) Coffee drinking and alcoholic and nonalcoholic fatty liver diseases and viral hepatitis in the multiethnic cohort. Clin Gastroenterol Hepatol 15(8):1305–1307. https://doi.org/10.1016/j.cgh.2017.02.038

    Article  PubMed  PubMed Central  Google Scholar 

  • Shibata H, Sakamoto Y, Oka M, Kono Y (1999) Natural antioxidant, chlorogenic acid, protects against DNA breakage caused by monochloramine. Biosci Biotechnol Biochem 63:1295–1297

    Article  CAS  PubMed  Google Scholar 

  • Soumyanath A, Zhong YP, Henson E, Wadsworth T, Bishop J, Gold BG, Quinn JF (2012) Centella asiatica extract improves behavioral deficits in a mouse model of Alzheimer’s disease: investigation of a possible mechanism of action. Int J Alzheimers Dis 2012:381974. https://doi.org/10.1155/2012/381974

    Article  PubMed  PubMed Central  Google Scholar 

  • Spencer JPE, Chowrimootoo G, Choudhury R, Debnam ES, Srai SK, Rice-Evans C (1999) The small intestine can both absorb and glucuronidate luminal flavonoids. FEBS Lett 458:224–230

    Article  CAS  PubMed  Google Scholar 

  • Stalder R, Bexter A, Würzner HP, Luginbühl H (1990) A carcinogenicity study of instant coffee in Swiss mice. Food Chem Toxicol 28:829–837

    Article  CAS  PubMed  Google Scholar 

  • Stalmach A, Steiling H, Williamson G, Crozier A (2010) Bioavailability of chlorogenic acids following acute ingestion of coffee by humans with an ileostomy. Arch Biochem Biophys 501:98–105

    Article  CAS  PubMed  Google Scholar 

  • Steinhart H, Luger A, Piost J (2001) Antioxidative effect of coffee melanoidins, 19th edn. ASIC Colloque Scientifique International sur le Café, Trieste, pp 67–74

    Google Scholar 

  • Sytar O, Zivcak M, Bruckova K, Brestic M, Hemmerich I, Rauh C, Simko I (2018) Shift in accumulation of flavonoids and phenolic acids in lettuce attributable to changes in ultraviolet radiation and temperature. Sci Hortic (Amsterdam) 239:193–204. https://doi.org/10.1016/j.scienta.2018.05.020

    Article  CAS  Google Scholar 

  • Thom E (2007) The effect of chlorogenic acid enriched coffee on glucose absorption in healthy volunteers and its effect on body mass when used long-term in overweight and obese people. J Int Med Res 35:900–908

    Article  CAS  PubMed  Google Scholar 

  • Thompson Coon JS, Eernst E (2003) Herbs for serum cholesterol reduction: a systematic view. J Fam Pract 52(6):468–478

    PubMed  Google Scholar 

  • Tian D, Natesan S, White JR, Paine MF (2019) Effects of common CYP1A2 genotypes and other key factors on intraindividual variation in the caffeine metabolic ratio: an exploratory analysis. Clin Transl Sci 12(1):39–46. https://doi.org/10.1111/cts.12598

    Article  CAS  PubMed  Google Scholar 

  • Tousch D, Lajoix A-D, Hosy E, Azay-Milhau J, Ferrare K, Jahannault C, Cros G, Petit P (2008) Chicoric acid, a new compound able to enhance insulin release and glucose uptake. Biochem Biophys Res Commun 377(1):131–135

    Article  CAS  PubMed  Google Scholar 

  • Van Dijk AE, Olthof MR, Meeuse JC, Seebus E, Heine RJ, Van Dam RM (2009) Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. Diabetes Care 32(6):1023–1025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vo VA, Lee JW, Park JH, Kwon JH, Lee HJ, Kim SS, Kwon YS, Chun W (2014) N-(p-Coumaryol)-tryptamine suppresses the activation of JNK/c-Jun signaling pathway in LPS-challenged RAW264.7 cells. Biomol Ther (Seoul) 22:200–206. https://doi.org/10.4062/biomolther.2014.013

    Article  CAS  Google Scholar 

  • Wan CW, Wong CNY, Pin WK, Wong MHY, Kwok CY, Chan RYK, Yu PHF, Chan SW (2013) Chlorogenic acid exhibits cholesterol lowering and fatty liver attenuating properties by up-regulating the gene expression of PPAR-α in hypercholester- olemic rats induced with a high-cholesterol diet. Phytother Res 27(4):545–551

    Article  CAS  PubMed  Google Scholar 

  • Wang G-F, Shi L-P, Ren Y-D, Liu Q-F, Liu H-F, Zhang R-J, Li Z, Zhu F-H, He P-L, Tang W (2009) Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antivir Res 83(2):186–190

    Article  CAS  PubMed  Google Scholar 

  • Wider B, Pittler MH, Thompson-Coon J, Ernst E (2013) Artichoke leaf extract for treating hypercholesterolaemia. Cochrane Database Syst Rev 28(3):CD003335. https://doi.org/10.1002/14651858.CD003335.pub3

    Article  Google Scholar 

  • Wittemer SM, Ploch M, Windeck T, Muller SC, Drewelow B, Derendorf H, Veit M (2005) Bioavailability and pharmacokinetics of caffeoylquinic acids and flavonoids after oral administration of artichoke leaf extracts in humans. Phytomedicine 12:28–38

    Article  CAS  PubMed  Google Scholar 

  • Wójcicki J (1978) Effect of 1,5-dicaffeylquinic acid (Cynarine) on cholesterol levels in serum and liver of acute ethanol-treated rats. Drug Alcohol Depend 3:143–145

    Article  PubMed  Google Scholar 

  • World Health Organization (2018) Global health estimates 2016: deaths by cause, age, sex, by country and by region, 2000–2016. World Health Organization, Geneva. http://www.who.int/healthinfo/global_burden_disease/estimates/en/ (Accessed 28 May 2018)

    Google Scholar 

  • Woźniak D, Ślusarczyk S, Domaradzki K, Dryś A, Matkowski A (2018) Comparison of polyphenol profile and antimutagenic and antioxidant activities in two species used as source of Solidaginis herba – goldenrod. Chem Biodivers 15:e1800023. https://doi.org/10.1002/cbdv.201800023

    Article  CAS  PubMed  Google Scholar 

  • Xiao Q, Sinha R, Graubard BI, Freedman ND (2014) Inverse associations of total and decaffeinated coffee with liver enzyme levels in national health and nutrition examination survey 1999–2010. Hepatology 60:2091–2098. https://doi.org/10.1002/hep.27367

    Article  CAS  PubMed  Google Scholar 

  • Xu JG, Hu QP, Liu Y (2012) Antioxidant and DNA-protective activities of chlorogenic acid isomers. J Agric Food Chem 60:11625–11630

    Article  CAS  PubMed  Google Scholar 

  • Yamada H, Kawado M, Aoyama N, Hashimoto S, Suzuki K, Wakai K, Suzuki S, Watanabe Y, Tamakoshi A (2014) Coffee consumption and risk of colorectal cancer: the Japan collaborative cohort study. J Epidemiol 24:370–378

    Article  PubMed  Google Scholar 

  • Yamagata K (2018) Do coffee polyphenols have a preventive action on metabolic syndrome associated endothelial dysfunctions? An assessment of the current evidence. Antioxidants (Basel) 7(2):E26. https://doi.org/10.3390/antiox7020026

    Article  CAS  Google Scholar 

  • Yang ZZ, Yu YT, Lin HR, Liao DC, Cui XH, Wang HB (2018) Lonicera japonica extends lifespan and healthspan in Caenorhabditis elegans. Free Radic Biol Med 129:310–322. https://doi.org/10.1016/j.freeradbiomed.2018.09.035

    Article  CAS  PubMed  Google Scholar 

  • Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M (2016) Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64(1):73–84. https://doi.org/10.1002/hep.28431

    Article  PubMed  Google Scholar 

  • Yuan Y, Gong X, Zhang L, Jiang R, Yang J, Wang B, Wan J (2017) Chlorogenic acid ameliorated concanavalin A-induced hepatitis by suppression of toll-like receptor 4 signaling in mice. Int Immunopharmacol 44:97–104

    Article  CAS  PubMed  Google Scholar 

  • Zengin G, Uysal A, Diuzheva A, Gunes E, Jekő J, Cziáky Z, Picot-Allain CMN, Mahomoodally MF (2018) Characterization of phytochemical components of Ferula halophila extracts using HPLC-MS/MS and their pharmacological potentials: a multi-functional insight. J Pharm Biomed Anal 160:374–382. https://doi.org/10.1016/j.jpba.2018.08.020

    Article  CAS  PubMed  Google Scholar 

  • Zhang JY, Zhang Q, Li N, Wang ZJ, Lu JQ, Qiao YJ (2013) Diagnostic fragment-ion-based and extension strategy coupled to DFIs intensity analysis for identification of chlorogenic acids isomers in Flos Lonicerae Japonicae by HPLC-ESI-MSn. Talanta 104:1–9. https://doi.org/10.1016/j.talanta.2012.11.012

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Matkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Woźniak, D., Nawrot-Hadzik, I., Kozłowska, W., Ślusarczyk, S., Matkowski, A. (2020). Caffeoylquinic Acids. In: Xiao, J., Sarker, S., Asakawa, Y. (eds) Handbook of Dietary Phytochemicals. Springer, Singapore. https://doi.org/10.1007/978-981-13-1745-3_23-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1745-3_23-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1745-3

  • Online ISBN: 978-981-13-1745-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics