Skip to main content

Tea Catechins

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Dietary Phytochemicals

Abstract

Tea, a water infusion of leaves from Camellia sinensis (L.) Kuntze, is the oldest, most consumed beverage worldwide. Archeologists have recently discovered traces of tea drinking dating to around 206 B.C. There are five major types of tea, differing in production processes and, therefore, in chemical composition: green tea, white and yellow teas, oolong tea, black tea, and dark tea. Compounds identified in green tea are involved in several biological activities and can have various health-promoting functions, which can include antioxidant, anti-inflammatory, antiviral, anticancer, antidiabetic, and anti-obesity activities, as well as activities against CVD and neurodegenerative diseases, and many others. These beneficial effects are mainly ascribed to tea catechins, bioactive constituents belonging to the flavonoid family (flavan-3-ols subclass), which represent approximately 70% of all polyphenols in tea. However, the maximal concentrations of the catechins detected in blood in human subjects or animals after oral ingestion are in submicromolar or low micromolar levels, which indicate that only small amounts are absorbed and passed into the blood. Chapter “Tea Catechins” describes the chemical composition of C. sinensis leaves and the beneficial effects on human health upon tea consumption, focusing on tea catechin bioactive constituents. This chapter also takes into account their bioavailability, toxicological aspects, and safety profiles. Furthermore, recent applications of tea catechins in the food market are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahmad RS, Butt MS, Sultan MT et al (2015) Preventive role of green tea catechins from obesity and related disorders especially hypercholesterolemia and hyperglycemia. J Transl Med 13(79):1–9

    Google Scholar 

  • Aktas O, Prozorovski T, Smorodchenko A et al (2004) Green tea epigallocatechin-3-gallate mediates T cellular NF-kappa B inhibition and exerts neuroprotection in autoimmune encephalomyelitis. J Immunol 173(9):5794–5800

    Article  CAS  PubMed  Google Scholar 

  • Alipour M, Malihi R, Hosseini A et al (2018) The effects of catechins on related risk factors with type 2 diabetes: a review. Prog Nutr 20:12–20

    Google Scholar 

  • Alves MG, Martins AD, Teixeeira NF et al (2015) White ta consumption improves cardiac glycolytic and oxidative profile of prediabetic rats. J Funct Foods 14:102–110

    Article  CAS  Google Scholar 

  • Amazon. https://www.amazon.com/Green-Extract-Supplement-EGCG-Vitamin/

  • Anandhan A, Essa MM, Manivasagam T (2013) Therapeutic attenuation of neuroinflammation and apoptosis by black tea theaflavin in chronic MPTP/probenecid model of Parkinson’s disease. Neurotox Res 23(2):166–173

    Article  CAS  PubMed  Google Scholar 

  • Asgari M, White E, Warton EM et al (2011) Association of tea consumption and cutaneous squamous cell carcinoma. Nutr Cancer 63(2):314–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashafaq M, Raza SS, Khan MM et al (2012) Catechin hydrate ameliorates redox imbalance and limits inflammatory response in focal cerebral ischemia. Neurochem Res 37:1747–1760

    Article  CAS  PubMed  Google Scholar 

  • Ashigai H, Taniguchi Y, Suzuki M et al (2016) Fecal lipid excretion after consumption of black tea polyphenol containing beverage-randomized, placebo-controlled, double-blind, crossover study. Biol Pharm Bull 39(5):699–704

    Article  CAS  PubMed  Google Scholar 

  • Bernatoniene J, Kopustinskiene DM (2018) The role of catechins in cellular responses to oxidative stress. Molecules 23(965):1–11

    Google Scholar 

  • Bonkovsky HL (2016) Hepatotoxicity associated with supplements containing Chinese green tea (Camellia sinensis). Ann Intern Med 144:68–71

    Article  Google Scholar 

  • Brown AL, Lane J, Holyoak C et al (2011) Health effects of green tea catechins in overweight and obese men: a randomised controlled cross-over trial. Br J Nutr 106(12):1880–1889

    Article  CAS  PubMed  Google Scholar 

  • Capellino S, Straub RH, Cutolo M (2014) Aromatase and regulation of the estrogen to androgen ratio in synovial tissue inflammation: common pathway in both sexes. Ann N Y Acad Sci 1317(1):24–23

    Article  CAS  PubMed  Google Scholar 

  • Carnevale R, Loffredo L, Nocella C et al (2014) Epicatechin and catechin modulate endothelial activation induced by platelets of patients with peripheral artery disease. Oxidative Med Cell Longev ID691015:1–9

    Google Scholar 

  • Chen LJ, Liu CY, Chu JP et al (2016) Therapeutic effect of high dose green tea extract on weight reduction: a randomized, double-blind, placebo-controlled clinical trial. Clin Nutr 35(3):592–599

    Article  CAS  PubMed  Google Scholar 

  • Chikara S, Nagaprashantha LD, Singhal J et al (2018) Oxidative stress and dietary phytochemicals: role in cancer chemoprevention and treatment. Cancer Lett 413:122–134

    Article  CAS  PubMed  Google Scholar 

  • Colon M, Nerin C (2014) Molecular interactions between caffeine and catechins in green tea. J Agric Food Chem 62(28):6777–6783

    Article  CAS  PubMed  Google Scholar 

  • Cooper R, Morré DJ, Morré DM (2005) Medicinal benefits of green tea: Part I. Review of noncancer health benefits. J Altern Complement Med 11:521–528

    Article  PubMed  Google Scholar 

  • Daglia M, Di Lorenzo A, Nabavi SF, Sureda A, Khanjani S, Moghaddam AH, Braidy N, Nabavi SM (2017) Improvement of antioxidant defences and mood status by Oral GABA tea Administration in a mouse model of post-stroke depression. Nutrients 9(5):446

    Article  CAS  PubMed Central  Google Scholar 

  • Del Rio D, Calani L, Cordero C, Slavatore S, Pellegrini N, Brighenti F (2010) Bioavailability and catabolism of green tea flavan-3-ols in humans. Nutrition 26:1110–1116

    Article  CAS  PubMed  Google Scholar 

  • Deng YT, Chang TW, Lee MS et al (2012) Suppression of free fatty acid-induced insulin resistance by phytopolyphenols in C2C12 mouse skeletal muscle cells. J Agric Food Chem 60(4):1059–1066

    Article  CAS  PubMed  Google Scholar 

  • Di Lorenzo A, Nabavi SF, Sureda A, Moghaddam AH, Khanjani S, Arcidiaco P, Nabavi SM, Daglia M (2016) Antidepressive-like effects and antioxidant activity of green tea and GABA green tea in a mouse model of post-stroke depression. Mol Nutr Food Res 60(3):556–579

    Article  CAS  Google Scholar 

  • Dostal AM, Samavat H, Espejo L et al (2016) Green tea extract and catechol-O-methyltransferase genotype modify fasting serum insulin and plasma adiponectin concentrations in a randomized controlled trial of overweight and obese postmenopausal women. J Nutr 146:38–45

    Article  PubMed  Google Scholar 

  • Ðudarić L, Fuzinac-Smojver A, Muhvic D et al (2015) The role of polyphenols on bone metabolism in osteoporosis. Food Res Int 77:290–298

    Article  CAS  Google Scholar 

  • Ebay. https://www.ebay.com/. Accessed 28 Feb 2019

  • EFSA (2015) Food supplements. http://www.efsa.europa.eu/en/topics/topic/supplements. Accessed Feb 2019

  • EFSA (2018) Scientific opinion on the safety of green tea catechins. EFSA J 16(4):5239. 89pp. https://doi.org/10.2903/j.efsa.2018.5239

  • FAOSTAT. FAO database. Food and Agriculture Organization; United Nations. http://faostat3.fao.org/download/Q/QC/E. Accessed Jan 2019

  • Fei Q, Gao Y, Zhang X et al (2014) Effects of Oolong tea polyphenols, EGCG, and EGCG3″Me on pancreatic α-amylase activity in vitro. J Agric Food Chem 62:9507–9514

    Article  CAS  PubMed  Google Scholar 

  • Fuhrman BJ, Pfeifer RM, Wu AH et al (2013) Green tea intake is associated with urinary estrogen profiles in Japanese-American women. Nutr J 12(1):1–25

    Article  Google Scholar 

  • Gammon K (2014) Neurodegenerative disease: brain windfall. Nature 515:299–300

    Article  PubMed  Google Scholar 

  • Gao J, Xu P, Wang Y et al (2013) Combined effects of green tea extracts, green tea polyphenols or epigallocatechin gallate with acarbose on inhibition against α-amylase and α-glucosidase in vitro. Molecules 18(4):11614–11623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Cortes M, Robles-Diaz M, Ortega-Alonso A et al (2016) Hepatotoxicity by dietary supplements: a tabular listing and clinical characteristics. Int J Mol Sci 17(4):537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George KO, Moseti KO, Wanyoko JK, Kinyanjui T, Wachira NF (2015) Quantitation of the total catechin content in oils extracted from seeds of selected tea (Camellia sinensis (L) O. Kuntze, Theaceae) clones by RP-HPLC. American Journal of Plant Sciences 6:1080–1089

    Google Scholar 

  • Gokulakrisnan A, Jayachandran Dare B, Thirunavukkarasu C (2011) Attenuation of the cardiac inflammatory changes and lipid anomalies by (−)-epigallocatechin-gallate in cigarette smoke-exposed rats. Mol Cell Biochem 354(1–2):1–10

    Article  CAS  PubMed  Google Scholar 

  • Gondoin A, Grussu D, Steward D et al (2010) White and green tea polyphenols inhibit pancreatic lipase in vitro. Food Res Int 43:1537–1544

    Article  CAS  Google Scholar 

  • Google Patents. https://patents.google.com/. Accessed 11 Mar 2019

  • Granja A, Frias I, Rute Neves A et al (2017) Therapeutic potential of epigallocatechin gallate nanodelivery systems. Bio Med Res Int ID5813793:1–15

    Google Scholar 

  • Guo Y, Zhi F, Chen P et al (2017) Green tea and the risk of prostate cancer: a systematic review and meta-analysis. Medicine 96(13):e6426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara-Kudo Y, Yamasaki A, Sasaki M, Okubo T, Minai Y, Haga M, Kondo K, Sugita-Konishi Y (2005) Antibacterial action on pathogenic bacterial spore by green tea catechins. J Sci Food Agric 85:2354–2361

    Article  CAS  Google Scholar 

  • Hibi M, Takase H, Iwasaki M et al (2018) Efficacy of tea catechin-rich beverages to reduce abdominal adiposity and metabolic syndrome risks in obese and overweight subjects: a pooled analysis of 6 human trials. Nutr Res 55:1–10

    Article  CAS  PubMed  Google Scholar 

  • Hirao K, Yumoto H, Nakanishi T et al (2010) Tea catechins reduce inflammatory reactions via mitogen-activated protein kinase pathways in toll-like receptor 2 ligand-stimulated dental pulp cells. Life Sci 86:654–660

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Webster D, Cao J, Shao A (2018) The safety of green tea and green tea extract consumption in adults – results of a systematic review. Regul Toxicol Pharmacol 95:412–433

    Article  CAS  PubMed  Google Scholar 

  • Ikeda A, Iso H, Yamagishi K et al (2018) Plasma tea catechins and risk of cardiovascular disease in middle-aged Japanese subjects: the JPHC study. Atherosclerosis 277:90–97

    Article  CAS  PubMed  Google Scholar 

  • Ishii T, Ichikawa T, Minoda K, Kusaka K, Ito S, Suzuki Y, Akagawa M, Mochizuki K, Goda T, Nakayama T (2011) Human serum albumin as an antioxidant in the oxidation of (−)-epigallocatechin gallate: participation of reversible covalent binding for interaction and stabilization. Biosci Biotechnol Biochem 75:100–106

    Article  CAS  PubMed  Google Scholar 

  • Ishizu T, Hiroyuki T, Sato T (2016) Mechanism of creaming down based on chemical characterization of a complex of caffeine and tea catechins. Chem Pharm Bull. https://doi.org/10.1248/cpb.c16-00131

  • Jin YR, Im JH, Park ES et al (2008) Antiplatelet activity of epigallocatechin gallate is mediated by the inhibition of PLCg2 phosphorylation, elevation of PGD2 production, and maintaining calcium–ATPase activity. J Cardiovasc Pharmacol 51(1):45–54

    Article  CAS  PubMed  Google Scholar 

  • Jowko E, Dlugolecka B, Makaruk B et al (2015) The effect of green tea extract supplementation on exercise-induced oxidative stress parameters in male sprinters. Eur J Nutr 54:783–791

    Article  CAS  PubMed  Google Scholar 

  • Kager N, Ferk F, Kundi M et al (2010) Prevention of oxidative DNA damage in inner organs and lymphocytes of rats by green tea extract. Eur J Nutr 49(4):227–234

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Quon MJ, Kim JA (2014) New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol 2:187–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuriyama S (2008) The relation between green tea consumption and cardiovascular disease as evidenced by epidemiological studies. J Nutr 138:1548S–1553S

    Article  CAS  PubMed  Google Scholar 

  • Lee JW, Lee YK, Ban JO et al (2009) Green tea (−)-epigallocatechin-3-gallate inhibits beta-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-kappaB pathways in mice. J Nutr 139:1987–1993

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Lee YN, Youn HN et al (2012) Anti-influenza virus activity of green tea by-products in vitro and efficacy against influenza virus infection in chickens. Poult Sci 91:66–73

    Article  CAS  PubMed  Google Scholar 

  • Li X, Feng J, Liu X et al (2013) Epigallocatechin-3-gallate inhibits IGF-I-stimulated lung cancer angiogenesis through downregulation of HIF-1ǖFC; and VEGF expression. J Nutrigenet Nutrigenomics 6(3):169–178

    Article  CAS  PubMed  Google Scholar 

  • Liao J, Wu X, Zhiqiang X, Li Q, Duan Y, Fang W, Zhu X (2017) γ-Aminobutyric acid (GABA) accumulation in tea (Camellia sinensis L.) through the GABA shunt and polyamine degradation pathways under anoxia. J Agric Food Chem 65:3013–3018

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Dai R, Zhu J, Li X (2010) Optimizing color and lipid stability of beef patties with a mixture design incorporating with tea catechins, carnosine, and a-tocopherol. J Food Eng 98:170–177

    Article  CAS  Google Scholar 

  • Liu J, Liu S, Zhou H et al (2016) Association of green tea consumption with mortality from all cause, cardiovascular disease and cancer in a Chinese cohort on 165,000 adult men. Eur J Epidemiol 31:853–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lochocka K, Bajerska J, Glapa A et al (2015) Green tea extract decreases starch digestion and absorption from a test meal in humans: a randomized, placebo-controlled crossover study. Sci Rep 5(12015):1–5

    Google Scholar 

  • Macedo RC, Bondan EF, Otton R (2017) Redox status on different regions of the central nervous system of obese and lean rats treated with green tea extract. Nutr Neurosci 22:1–13

    Google Scholar 

  • Mandel SA, Amit T, Weinreb O et al (2008) Simultaneous manipulation of multiple brain targets by green tea catechins: a potential neuroprotective strategy for Alzheimer and Parkinson diseases. CNS Neurosci Ther 14:352–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandel SA, Weinreb O, Amit T, Youdim MB (2012) Molecular mechanisms of the neuroprotective/neurorescue action of multi-target green tea polyphenols. Front Biosci (Schol Ed) 4:581–598

    Google Scholar 

  • Marinovic MP, Morandi AC, Otton R (2015) Green tea catechins alone or in combination alter functional parameters of human neutrophils via suppressing the activation of TLR-4/NFkappaB p65 signal pathway. Toxicol In Vitro 29:1766–1778

    Article  CAS  PubMed  Google Scholar 

  • Market Research (2018) Future of global green tea extract market to 2025 – growth opportunities, competition and outlook of green tea extract type, packaging, applications, distribution channel, form and regions report. https://www.marketresearch.com/OG-Analysis-v3922/Future-Global-Green-Tea-Extract-12199295/. Accessed 11 Mar 2019

  • Martínez L, Cilla I, Beltrán JA, Roncalés P (2005) Antioxidant effect of rosemary, borage, green tea, pu-erh tea and ascorbic acid on fresh pork sausages packaged in a modified atmosphere: influence of the presence of sodium chloride. J Sci Food Agric 86:1298–1307

    Article  CAS  Google Scholar 

  • McLarty J, Bigelow LH, Smith M et al (2009) Tea polyphenols decrease serum levels of prostate-specific antigen, hepatocyte growth factor, and vascular endothelial growth factor in prostate cancer patients and inhibit production of hepatocyte growth factor and vascular endothelial growth factor in vitro. Cancer Prev Res 2(7):673–682

    Article  CAS  Google Scholar 

  • Mielgo-Ayuso J, Barrenechea L, Alcorta P et al (2014) Effects of dietary supplementation with epigallocatechin-3-gallate on weight loss, energy homeostasis, cardiometabolic risk factors and liver function in obese women: randomised, double-blind, placebo-controlled clinical trial. Br J Nutr 111(7):1263–1271

    Article  CAS  PubMed  Google Scholar 

  • Mineharu Y, Koizumi A, Wada Y et al (2011) Coffee, green tea, black tea and oolong tea consumption and risk of mortality from cardiovascular disease in Japanese men and women. J Epidemiol Community Health 65:230–240

    Article  PubMed  Google Scholar 

  • Mousavi A, Vafa M, Neyestani T et al (2013) The effects of green tea consumption on metabolic and anthropometric indices in patients with type 2 diabetes. J Res Med Sci 18(12):1080–1086

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagao T, Meguro S, Hase T et al (2009) A catechin-rich beverage improves obesity and blood glucose control in patients with type 2 diabetes. Obesity 17(2):310–317

    Article  CAS  PubMed  Google Scholar 

  • Najafi N, Salehi M, Ghazanfarpour M et al (2018) The association between green tea consumption and breast cancer risk: a systematic review and meta-analysis. Phytother Res 32:1855–1864

    Article  Google Scholar 

  • Nance C, Siwak EB, Shearer WT (2009) Preclinical development of the green tea catechin, epigallocatechin gallate, as an HIV-1 therapy. J Allergy Clin Immunol 123(2):459–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neurodegenerative Diseases (2015) http://www.nature.com/subjects/neurodegenerative-diseases. Accessed 17 Jan 2019

  • Ortiz-López L, Márquez Valadez B, Gómez Sánchez A et al (2016) Green tea compound epigallo-catechin-3-gallate (EGCG) increases neuronal survival in adult hippocampal neurogenesis in vivo and in vitro. Neuroscience 322:208–220

    Article  CAS  PubMed  Google Scholar 

  • Ortsäter H, Grankvist N, Wolfram S et al (2012) Diet supplementation with green tea extract epigallocatechin gallate prevents progression to glucose intolerance in db/db mice. Nutr Metab 9(11):1–10

    Google Scholar 

  • Pang J, Zhang Z, Zheng TZ et al (2016) Green tea consumption and risk of cardiovascular and ischemic related diseases: a meta-analysis. Int J Cardiol 202:967–974

    Article  PubMed  Google Scholar 

  • Park HS, Lee HJ, Shin MH, Lee K-W, Lee H, Kim Y-S, Kim KO, Kim KH (2007) Effects of cosolvents on the decaffeination of green tea by supercritical carbon dioxide. Food Chem 105(3):1011–1017

    Article  CAS  Google Scholar 

  • Pastoriza S, Mesias M, Cabrera C et al (2017) Healthy properties of green and white teas: update. Food Funct 8:2650–2662

    Article  CAS  PubMed  Google Scholar 

  • Pogačnik L, Pirc K, Pamela I et al (2016) Potential for brain accessibility and analysis of stability of selected flavonoids in relation to neuroprotection in vitro. Brain Res 1651:17–26

    Article  CAS  PubMed  Google Scholar 

  • Rahman SU, Li Y, Huang Y et al (2018) Treatment of inflammatory bowel disease via green tea polyphenols: possible application and protective approaches. Inflammopharmacology 26:319–330

    Article  CAS  PubMed  Google Scholar 

  • Rahmani AH, Al Shabrmi FM, Allemailem KS et al (2015) Implications of green tea and its constituents in the prevention of cancer via the modulation of cell signalling pathway. Bio Med Res Int ID925640:1–12

    Google Scholar 

  • Rees JR, Stukel TA, Perry A et al (2007) Tea consumption and basal cell and squamous cell skin cancer: results of a case-control study. J Am Acad Dermatol 56(5):781–785

    Article  PubMed  PubMed Central  Google Scholar 

  • Rigacci S, Stefani M (2015) Nutraceuticals and amyloid neurodegenerative diseases: a focus on natural phenols. Expert Rev Neurother 15:41–52

    Article  CAS  PubMed  Google Scholar 

  • Rocha A, Bolin AP, Cardoso CAL et al (2016) Greentea extract activates AMPK and ameliorates white adipose tissue metabolic dysfunction induced by obesity. Eur J Nutr 55:2231–2244

    Article  CAS  PubMed  Google Scholar 

  • Sampath C, Rashid MR, Sang S et al (2017) Green tea epigallocatechin 3-gallate alleviates hyperglycemia and reduces advanced glycation end products via nrf2 pathway in mice with high fat diet-induced obesity. Biomed Pharmacother 87:73–81

    Article  CAS  PubMed  Google Scholar 

  • Sanlier N, Gokcen BB, Altug M (2018) Tea consumption and disease correlation. Trends Food Sci Technol 78:95–106

    Article  CAS  Google Scholar 

  • Santhakumar AB, Battino M, Alvarez-Suarez JM (2018) Dietary polyphenols: structures, bioavailability and protective effects against atherosclerosis. Food Chem Toxicol 113:49–65

    Article  CAS  PubMed  Google Scholar 

  • Santos JS, Deolindo CTP, Hoffmann JF et al (2018) Optimized Camellia sinensis var. sinensis, Ilex paraguariensis, and Aspalathus linearis blend presents high antioxidant and antiproliferative activities in a beverage model. Food Chem 254:348–358

    Article  CAS  PubMed  Google Scholar 

  • Satoh T, Igarashi M, Yamada S et al (2015) Inhibitory effect of black tea and its combination with acarbose on small intestinal α-glucosidase activity. J Ethnopharmacol 161:147–155

    Article  CAS  PubMed  Google Scholar 

  • Schimidt HL, Garcia A, Martins A, Mello-Carpes PB, Carpes FP (2017) Green tea supplementation produces better neuroprotective effects than red and black tea in Alzheimer-like rat model. Food Res Int 100(1):442–448

    Article  CAS  PubMed  Google Scholar 

  • Schrag A, Ben-Shlomo Y, Brown R (1998) Young-onset Parkinson's disease revisited – clinical features, natural history, and mortality. Mov Disord 13(6):885–894

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Murali A, Singh AK et al (2017) Epigallocatechin gallate, an active green tea compound inhibits the Zika virus entry into host cells via binding the envelope protein. Int J Biol Macromol 104:1046–1054

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MW, Singh SJP, Thakur PK et al (2016) Antimicrobial properties of teas and their extracts in vitro. Crit Rev Food Sci Nutr 56:1428–1439

    Article  CAS  PubMed  Google Scholar 

  • Sun K, Wang L, Ma Q et al (2017) Association between tea consumption and osteoporosis: a meta-analysis. Medicine 94(49):e9034

    Article  Google Scholar 

  • Sutherland BA, Rahman RMA, Appleton I (2016) Mechanisms of action of green tea catechins, with a focus on ischemia-induced neurodegeneration. J Nutr Biochem 17:291–306

    Article  CAS  Google Scholar 

  • Suzuki T, Pervin M, Gotoe S et al (2016) Beneficial effects of tea and the green tea catechin epigallocatechin-3-gallate on obesity. Molecules 21(1305):1–13

    Google Scholar 

  • Takahashi A, Watanabe T, Mondal A (2014) Mechanism-based inhibition of cancer metastasis with (−)-epigallocatechin gallate. Biochem Biophys Res Commun 443(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Takami H, Nakamoto M, Uemura H et al (2013) Inverse correlation between coffee consumption and prevalence of metabolic syndrome: baseline survey of the Japan multi-institutional collaborative cohort (J-MICC) study in Tokushima, Japan. J Epidemiol 23(1):12–20

    Article  PubMed  Google Scholar 

  • Tang SZ, Ou SY, Huang XS, Li W, Kerry JP, Buckley DJ (2006) Effects of added tea catechins on colour stability and lipid oxidation in minced beef patties held under aerobic and modified atmospheric packing conditions. J Food Eng 77:248–253

    Article  CAS  Google Scholar 

  • Tang J, Zheng JS, Fang L et al (2015) Tea consumption and mortality of all cancers, CVD and all causes: a meta-analysis of eighteen prospective cohort studies. Br J Nutr 114:6736–6783

    Article  CAS  Google Scholar 

  • Tenore GC, Daglia M, Ciampiglia R, Novellino E (2015) Exploring the nutraceutical potential of polyphenols from black, green, and white tea infusions – an overview. Curr Pharm Biotechnol 16(3):1–7

    Article  CAS  Google Scholar 

  • The Truth about Green Tea for Weight Loss (2018) https://www.consumerreports.org/dieting-weight-loss/truth-about-green-tea-for-weight-loss. Accessed 10 Mar 2019

  • Thichanpiang P, Wongprasert K (2015) Green tea polyphenol epigallocatechin-3-gallate attenuates TNF-alpha-induced intercellular adhesion molecule-1 expression and monocyte adhesion to retinal pigment epithelial cells. Am J Chin Med 43(1):103–119

    Article  CAS  PubMed  Google Scholar 

  • USDA ARS (United States Department of Agriculture, Agricultural Research Service). USDA Database for the Flavonoid Content. Release 2.1. 2007

    Google Scholar 

  • Venkatakrishnan K, Chiu HF, Cheng JC et al (2018) Comparative studies on the hypolipidemic, antioxidant and hepatoprotective activities of catechin-enriched green and oolong tea in a double-blind clinical trial. Food Funct 9(2):1205–1213

    Article  CAS  PubMed  Google Scholar 

  • Vernarelli JA, Lambert JD (2011) Tea consumption is inversely associated with weight status and other markers for metabolic syndrome in US adults. Eur J Nutr 52(3):1039–1048

    Article  CAS  Google Scholar 

  • Vuong QV, Stathopoulos CE, Nguyen M, Golding JB, Roach PD (2011) Isolation of green tea catechins and their utilization in the food industry. Food Rev Intl 27(3):227–247

    Article  CAS  Google Scholar 

  • Wang H-F, Tsai SY, Lin ML, Ou AS-m (2006) Comparison of bioactive components in GABA tea and green tea produced in Taiwan. Food Chem 96:648–653. https://doi.org/10.1016/j.foodchem.2005.02.046

    Article  CAS  Google Scholar 

  • Wang Y, Yu X, Wu Y et al (2012) Coffee and tea consumption and risk of lung cancer: a dose–response analysis of observational studies. Lung Cancer 78(2):169–170

    Article  PubMed  Google Scholar 

  • Wang W, Zhang ZZ, Wu Y et al (2018a) (−)-epigallocatechin-3-gallateameliorates atherosclerosis and modulates hepatic lipid metabolic gene expression in apolipoprotein E knockout mice: involvement of TTC39B. Front Pharmacol 9(195):1–10

    Google Scholar 

  • Wang WJ, Zjang Y, Yin W et al (2018b) Catechin weakens diabetic retinopathy by inhibiting the expression of NF-kappa B signalling pathway-mediated inflammatory factors. Ann Clin Lab Sci 48(5):594–600

    CAS  PubMed  Google Scholar 

  • Weiss DJ, Anderton CR (2003) Determination of catechins in matcha green tea by micellar electrokinetic chromatography. J Chromatogr 1011:173–180

    Google Scholar 

  • Xie Y, Kosinska A, Xu H, Andlauer W (2013) Milk enhances intestinal absorption of green tea catechins in in vitro digestion/Caco-2 cells model. Food Res Int 53:793–800

    Article  CAS  Google Scholar 

  • Xu YQ, Hu XF, Zou C, Shi J, Du QZ, Teng BT, Yin JF (2017) Effect of saccharides on sediment formation in green tea concentrate. LWT Food Sci Technol 78:352–360

    Article  CAS  Google Scholar 

  • Yamauchi R, Sasaki K, Yoshida K (2009) Identification of epigallocatechin-3-gallate in green tea polyphenols as a potent inducer of p53-dependent apoptosis in the human lung cancer cell line A549. Toxicol In Vitro 23(5):834–839

    Article  CAS  PubMed  Google Scholar 

  • Yang DJ, Hwang LS, Lin JT (2007) Effects of different steeping methods and storage on caffeine, catechins and gallic acid in bag tea infusions. J Chromatogr A 1156:312–320

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Mao QX, Xu HX et al (2014) Tea consumption and risk of type 2 diabetes mellitus: a systematic review and meta-analysis update. BMJ Open 4(7):e005632

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang CS, Zhang J, Zhang L et al (2016) Mechanisms of body weight reduction and metabolic syndrome alleviation by tea. Mol Nutr Food Res 60:160–174

    Article  CAS  PubMed  Google Scholar 

  • Yasui K, Tanabe H, Okada N et al (2010) Effects of catechin-rich green tea on gene expression of gluconeogenic enzymes in rat hepatoma H4IIE cells. Biomed Res 31(3):183–189

    Article  CAS  PubMed  Google Scholar 

  • Yuan JH, Li YQ, Yang XY (2008) Protective effects of epigallocatechin gallate on colon preneoplastic lesions induced by 2-amino-3-methylimidazo(4,5-f)quinoline in mice. Mol Med 14(9–10):590–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Wang Y, Zhang X et al (2012) Anti-cancer activities of tea epigallocatechin-3-gallate in breast cancer patients under radiotherapy. Curr Mol Med 12(2):163–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang ZF, Yang JL, Jiang HC et al (2017) Updated association of tea consumption on bone mineral density: a meta-analysis. Medicine 96(12):e6437

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng XX, Xu YL, Li SH et al (2013) Effects of green tea catechins with or without caffeine onglycemic control in adults: a meta-analysis of randomized controlled trials. Am J Clin Nutr 97(4):750–762

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Xu J, Ge Y et al (2014) Epigallocatechin-3-gallate (EGCG) protects skin cells from ionizing radiation via heme oxygenase-1 (HO-1) overexpression. J Radiat Res 55(6):1056–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Daglia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Baldi, A., Abramovič, H., Poklar Ulrih, N., Daglia, M. (2020). Tea Catechins. In: Xiao, J., Sarker, S., Asakawa, Y. (eds) Handbook of Dietary Phytochemicals. Springer, Singapore. https://doi.org/10.1007/978-981-13-1745-3_19-3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1745-3_19-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1745-3

  • Online ISBN: 978-981-13-1745-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Tea Catechins
    Published:
    20 March 2020

    DOI: https://doi.org/10.1007/978-981-13-1745-3_19-3

  2. Tea Catechins
    Published:
    04 January 2020

    DOI: https://doi.org/10.1007/978-981-13-1745-3_19-2

  3. Original

    Tea Catechins
    Published:
    16 October 2019

    DOI: https://doi.org/10.1007/978-981-13-1745-3_19-1