Skip to main content

In Situ TEM: Theory and Applications

  • Chapter
  • First Online:

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 272))

Abstract

Transmission electron microscope (TEM) is one of the most powerful techniques to obtain the microstructure of materials. Equipped with energy dispersive X-ray (EDX) and electron energy loss spectroscopy (EELS), not only crystallographic structures but also chemical information at nano-scale, atomic scale and even sub-angstrom scale can be obtained.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agrait, N., Rodrigo, J.G., Vieira, S.: Conductance steps and quantization in atomic size contacts. Phys. Rev. B 47, 12345–12348 (1993)

    Article  ADS  Google Scholar 

  • Awschalom, D.D., Warnock, J.: Super cooled liquids and solids in porous-glass. Phys. Rev. B 35, 6779–6785 (1987)

    Article  ADS  Google Scholar 

  • Bacon, R.: Growth, structure, and properties of graphite whiskers. J. Appl. Phys. 31, 283–290 (1960)

    Article  ADS  Google Scholar 

  • Bai, X.D., Golberg, D., Bando, Y., Zhi, C.Y., Tang, C.C., Mitome, M., Kurashima, K.: Deformation-driven electrical transport of individual boron nitride nanotubes. Nano Lett. 7, 632–637 (2007)

    Article  ADS  Google Scholar 

  • Barin, I., Sauert, F., Ernst, S.R., Wang, S.S.: Thermochemical Data of Pure Substances. VCH Verlagsgesellschaft mbH: D–6940, Weinheim (1989)

    Google Scholar 

  • Baughman, R.H., Zakhidov, A.A., de Heer, W.A.: Carbon nanotubes-the route toward applications. Science 297, 787–792 (2002)

    Article  ADS  Google Scholar 

  • Boyen, H.G., Fauth, K., Stahl, B., Ziemann, P., Kastle, G., Weigl, F., Banhart, F., Hessler, M., Schutz, G., Gajbhiye, N.S., Ellrich, J., Hahn, H., Buttner, M., Garnier, M.G., Oelhafen, P.: Electronic and magnetic properties of ligand-free FePt nanoparticles. Adv. Mater. 17(5), 574–578 (2005)

    Article  Google Scholar 

  • Boyer, S.: Temperature responsive device. US Patent No. 1,793,303, 17 Feb 1931

    Google Scholar 

  • Bromwich, T.J., Kasama, T., Chong, R.K.K., Dunin-Borkowski, R.E., Petford-Long, A.K., Heinonen, O.G., Ross, C.A.: Remanent magnetic states and interactions in nano-pillars. Nanotechnology 17(17), 4367–4373 (2006)

    Article  ADS  Google Scholar 

  • Bulatov, V.V., Justo, J.F., Cai, W., Yip, S., Argon, A.S., Lenosky, T., de Koning, M., de la Rubia, T.D.: Parameter-free modelling of dislocation motion: the case of silicon. Philos. Mag. A 81, 1257–1281 (2001)

    Article  ADS  Google Scholar 

  • Cazaux, J.: Correlations between ionization radiation damage and charging effects in transmission electron microscopy. Ultramicroscopy 60, 411 (1995)

    Article  Google Scholar 

  • Chabala, J.M.: Oxide-growth kinetics and fractal-like patterning across liquid gallium surfaces. Phys. Rev. B 46, 11346–11357 (1992)

    Article  ADS  Google Scholar 

  • Chang, Y.-C., Liaw, Y.-H., Huang, Y.-S., Hsu, T., Chang, C.-S., Tsong, T.-T.: In situ tailoring and manipulation of carbon nanotubes. Small 4, 2195–2198 (2008)

    Article  Google Scholar 

  • Charlier, J.C., Vita, D.A., Blase, X., Car, R.: Microscopic growth mechanisms for carbon nanotubes. Science 275, 647–649 (1997)

    Article  Google Scholar 

  • Che, R.C., Takeguchi, M., Shimojo, M., Zhang, W., Furuya, K.: Fabrication and electron holography characterization of FePt alloy nanorods. Appl. Phys. Lett. 87(22), 223109 (2005)

    Article  ADS  Google Scholar 

  • Chokshi, A.H., Rosen, A., Karch, J., Gleiter, H.: On the validity of the Hall-Petch relationship in nanocrystalline materials. Scr. Metall. 23, 1679–1684 (1989)

    Article  Google Scholar 

  • Clatterbuck, D.M., Krenn, C.R., Cohen, M.L., Morris, J.W.: Phonon instabilities and the ideal strength of aluminum. Phys. Rev. Lett. 91, 135501 (2003)

    Article  ADS  Google Scholar 

  • Conrad, H., Narayan, J.: On the grain size softening in nanocrystalline materials. Scripta Mater. 42, 1025–1030 (2000)

    Article  Google Scholar 

  • Coronado, E., Galan-Mascaros, J.R., Gomez-Garcia, C.J., Laukhin, V.: Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound. Nature 408(6811), 447–449 (2000)

    Article  ADS  Google Scholar 

  • Cumings, J., Collins, P.G., Zettl, A.: Materials: peeling and sharpening multiwall nanotubes. Nature 406, 586–586 (2000)

    Article  ADS  Google Scholar 

  • Dahmen, U., Erni, R., Radmilovic, V., Kisielowski, C., Rossell, M.D., Denes, P.: Background, status and future of the transmission electron aberration corrected microscope project. Philos. Trans. R. Soc. A 367(1903), 3795–3808 (2009)

    Article  ADS  Google Scholar 

  • Dai, H.J., Wong, E.W., Lu, Y.Z., Fan, S.S., Lieber, C.M.: Synthesis and characterization of carbide nanorods. Nature 375, 769–772 (1995)

    Article  ADS  Google Scholar 

  • de Knoop, L.: Investigation of iron filled multiwalled carbon nanotubes, Chalmers University of Technology (Department of Applied Physics) (2005)

    Google Scholar 

  • Dehm, G.: Miniaturized single-crystalline FCC metals deformed in tension: new insights in size-dependent plasticity. Prog. Mater. Sci. 54, 664–688 (2009)

    Article  Google Scholar 

  • Deng, Q.S., et al.: Uniform tensile elongation of a metallic glass prepared by FIB in the limit of suppressed shear banding. Acta Mater. 65, 6511–6518 (2011)

    Article  Google Scholar 

  • Dessau, D.S., Shen, Z.X., King, D.M., Marshall, D.S., Lombardo, L.W., Dickinson, P.H., Loeser, A.G., DiCarlo, J., Park, C.H., Kapitulnik, A., Spicer, W.E.: Key features in the measured band-structure of Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_{8+\delta } \): flat bands at EF and Fermi-surface nesting. Phys. Rev. Lett. 71(17), 2781–2784 (1993)

    Article  ADS  Google Scholar 

  • Diao, J.K., Gall, K., Dunn, M.L.: Surface-stress-induced phase transformation in metal nanowires. Nat. Mater. 2, 656–660 (2003)

    Article  ADS  Google Scholar 

  • Dong, L., Tao, X., Zhang, L., Zhang, X., Nelson, B.J.: Nanorobotic spot welding: controlled metal deposition with attogram precision from copper-filled carbon nanotubes. Nano Lett. 7, 58–63 (2007)

    Article  ADS  Google Scholar 

  • Dong, L., Tao, X., Hamdi, M., Zhang, L., Zhang, X., Ferreira, A., Nelson, B.J.: Nanotube fluidic junctions: internanotube attogram mass transport through walls. Nano Lett. 9, 210–214 (2009)

    Article  ADS  Google Scholar 

  • Dorozhkin, P., Tovstong, S., Golberg, D., Zhan, J.H., Ishikawa, Y., Shiozawa, M., Nakanishi, H., Nakata, K., Bando, Y.: A liquid-Ga-fitted carbon nanotube: a miniaturized temperature sensor and electrical switch. Small 1, 1088–1093 (2005)

    Article  Google Scholar 

  • Elkins, K.E., Vedantam, T.S., Liu, J.P., Zeng, H., Sun, S.H., Ding, Y., Wang, Z.L.: Ultrafine FePt nanoparticles prepared by the chemical reduction method. Nano Lett. 3(12), 1647–1649 (2003)

    Article  ADS  Google Scholar 

  • Erts, D., Olin, H., Ryen, L., Olsson, E., Thölén, A.: Maxwell and Sharvin conductance in gold point contacts investigated using TEM-STM. Phys. Rev. B 61, 12725 (2000)

    Article  ADS  Google Scholar 

  • Frank, S., Poncharal, P., Wang, Z.L., de Heer, W.A.: Carbon nanotube quantum resistors. Science 280, 1744–1746 (1998)

    Article  ADS  Google Scholar 

  • Frenkel, J.: Zur Theorie der Elastizit. Atsgrenze und der Festigkeit Kristallinischer Körper. Z. Phys. 37, 572–609 (1926)

    Article  ADS  MATH  Google Scholar 

  • Fu, Y., Sun, M., Tian, W.W., Wang, J.B., Gao, Y.H.: Melting, expansion behavior and electric transport of in-filling in MgO nanotubes. J. Nanosci. Nanotechnol. 12, 2718–2721 (2012)

    Article  Google Scholar 

  • Gabor, D.: Microscopy by reconstructed wave-fronts. Proc. R. Soc. Lond. A 197(1051), 454–487 (1949)

    Article  ADS  MATH  Google Scholar 

  • Gajdardziska-Josifovska, M., McCartney, M.R.: Elimination of thickness dependence from medium resolution electron holograms. Ultramicroscopy 53(3), 291–296 (1994)

    Article  Google Scholar 

  • Gao, Y.H., Bando, Y.: Nanothermodynamic analysis of surface effect on expansion characteristics of Ga in carbon nanotubes. Appl. Phys. Lett. 81, 3966–3968 (2002a)

    Article  ADS  Google Scholar 

  • Gao, Y.H., Bando, Y.: Carbon nanothermometer containing gallium. Nature 415, 599 (2002b)

    Article  Google Scholar 

  • Gao, Y.H., Bando, Y., Golberg, D.: Melting and expansion behavior of indium in carbon nanotubes. Appl. Phys. Lett. 81, 4133–4135 (2002)

    Article  ADS  Google Scholar 

  • Gao, Y.H., Bando, Y., Liu, Z.W., Golberg, D., Nakanishi, H.: Temperature measurement using gallium-filled carbon nanotube nanothermometer. Appl. Phys. Lett. 83, 2913–2915 (2003)

    Article  ADS  Google Scholar 

  • Gao, Y.H., Zhang, H.Y., Wang, Y.J., Zhang, Q.F., Han, X.Y., Li, Y.B., Liu, Z.W., Zhan, J.H., Golberg, D., Dorozhkin, P., Tovstong, S., Huang, D.X., Bando, Y.: Nanotube thermometer. J. Chin. Electr. Microsc. Soc. 27, 152–166 (2008)

    Google Scholar 

  • Gao, P., Kang, Z.C., Fu, W.Y., Wang, W.L., Bai, X.D., Wang, E.G.: Electrically driven redox process in cerium oxides. J. Am. Chem. Soc. 132, 4197–4201 (2010)

    Article  Google Scholar 

  • Gao, Y.H., Sun, M., Su, J., Zhi, C.Y., Golberg, D., Bando, Y., Duan, X.F.: Liquid Ga-filled carbon nanotube: miniaturized temperature sensor and electrical switch. Appl. Phys. Lett. 99, 083112 (2011)

    Article  ADS  Google Scholar 

  • Golberg, D., Bando, Y., Kurashima, K., Sato, T.: Synthesis and characterization of ropes made of BN multiwalled nanotubes. Scr. Mater. 44, 1561–1565 (2001)

    Article  Google Scholar 

  • Golberg, D., Costa, P.M.F.J., Mitome, M., Hampel, S., Haase, D., Mueller, C., Leonhardt, A., Bando, Y.: Copper-filled carbon nanotubes: rheostatlike behavior and femtogram copper mass transport. Adv. Mater. 19, 1937 (2007)

    Article  Google Scholar 

  • Golberg, D., et al.: Nanomaterial engineering and property studies in a transmission electron microscopy. Adv. Mater. 24, 177–194 (2012)

    Article  Google Scholar 

  • Goldstein, A.N., Echer, C.M., Alivisatos, A.P.: Melting in semiconductor nanocrystals. Science 256, 1425–1427 (1992)

    Article  ADS  Google Scholar 

  • Gray, D.E., Billings, B.H., Bleil, D.F., Cook, R.K., Crosswhite, H.M., Frederiskse, H.P.R., Lindsay, R.B., Marion, J.B., Zemansky, M.W.: Heat, 4–122 & Thermal expansion, 4–141 American Institute of Physics Handbook, 3rd edn. McGraw-Hill, New York (1972)

    Google Scholar 

  • Greer, J.R., Nix, W.D.: Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B 73, 245410 (2006)

    Article  ADS  Google Scholar 

  • Guo, H., Yan, P.F., Wang, Y.B., Tan, J., Zhang, Z.F., Sui, M.L., Ma, E.: Tensile ductility and necking of metallic glass. Nat. Mater. 6, 735–739 (2007)

    Article  ADS  Google Scholar 

  • Guo, H., Chen, K., Oh, Y., et al.: Mechanics and dynamics of the strain-Induced M1–M2 structural phase transition in individual VO\(_2\) nanowires. Nano Lett. 11, 3207–3213 (2011)

    Article  ADS  Google Scholar 

  • Han, W.Q., Fan, S.S., Li, Q.Q., Hu, Y.D.: Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science 277, 1287–1289 (1997)

    Article  Google Scholar 

  • Han, W.Q., Bando, Y., Kurashima, K., Sato, T.: Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction. Appl. Phys. Lett. 73, 3085–3087 (1998)

    Article  ADS  Google Scholar 

  • Han, X.D., Zhang, Y.F., Zheng, K., Zhang, X.N., Zhang, Z., Hao, Y.J., Guo, X.Y., Yuan, J., Wang, Z.L.: Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism. Nano Lett. 7, 452–457 (2007a)

    Article  ADS  Google Scholar 

  • Han, X.D., Zhang, Z., Wang, Z.L.: Experimental nanomechanics of one-dimensional nanomaterials by in situ microscopy. Nano Brief Rep. Rev. 2, 1–23 (2007b)

    Google Scholar 

  • Han, X.D., Zheng, K., Zhang, Y.F., Zhang, X.N., Zhang, Z., Wang, Z.L.: Low-temperature in situ large-strain plasticity of silicon nanowires. Adv. Mater. 19, 2112–2118 (2007c)

    Article  Google Scholar 

  • Haque, M.A., Saif, M.T.A.: In-situ tensile testing of nano-scale specimens in SEM and TEM. Exp. Mech. 42, 123–128 (2002)

    Article  Google Scholar 

  • Hébert, C., Schattschneider, P.: A proposal for dichroic experiments in the electron microscope. Ultramicroscopy 96(3–4), 463–468 (2003)

    Article  Google Scholar 

  • Hirsch, P., Howie, A., Nicholson, R., Pashley, D.W., Whelan, M.J.: Electron Microscopy of Thin Crystals. Krieger Publishing Company, Malabar (1967)

    Google Scholar 

  • Howe, J.M., Mori, H., Wang, Z.L.: In situ high resolution transmission electron microscopy in the study of nanomaterials and properties. MRS Bull. 33, 115–121 (2008)

    Article  Google Scholar 

  • Huang, J.Y., Chen, S., Jo, S.H., Wang, Z., Han, D.X., Chen, G., Dresselhaus, M.S., Ren, Z.F.: Atomic-scale imaging of wall-by-wall breakdown and concurrent transport measurements in multiwall carbon nanotubes. Phys. Rev. Lett. 94, 236802 (2005)

    Article  ADS  Google Scholar 

  • Huang, J.Y., Chen, S., Ren, Z.F., Wang, Z.Q., Wang, D.Z., Vaziri, M., Suo, Z., Chen, G., Dresselhaus, M.S.: Kink formation and motion in carbon nanotubes at high temperatures. Phys. Rev. Lett. 97, 075501 (2006)

    Article  ADS  Google Scholar 

  • Huang, J.Y., Ding, F., Jiao, K., Yakobson, B.I.: Real time microscopy, kinetics, and mechanism of giant fullerene evaporation. Phys. Rev. Lett. 99, 175503 (2007a)

    Google Scholar 

  • Huang, J.Y., Chen, S., Ren, Z.F., Wang, Z., Kempa, K., Naughton, M.J., Chen, G., Dresselhaus, M.S.: Enhanced ductile behavior of tensile-elongated individual double-walled and triple-walled carbon nanotubes at high temperatures. Phys. Rev. Lett. 98, 185501 (2007b)

    Google Scholar 

  • Huang, J.Y., Ding, F., Yakobson, B.I.: Dislocation dynamics in multiwalled carbon nanotubes at high temperatures. Phys. Rev. Lett. 100, 035503 (2008)

    Article  ADS  Google Scholar 

  • Huang, J.Y., Zhong, L., Wang, C.M., Sullivan, J.P., Xu, W., Zhang, L.Q., Mao, S.X., Hudak, N.S., Liu, X.H., Subramanian, A., Fan, H.Y., Qi, L.A., Kushima, A., Li, J.: In situ observation of the electrochemical lithiation of a single SnO\(_2\) nanowire electrode. Science 330, 1515–1520 (2010)

    Article  ADS  Google Scholar 

  • Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  ADS  Google Scholar 

  • Jin, C.H., Wang, J.Y., Wang, M.S., Su, J., Peng, L.M.: In-situ studies of electron field emission of single carbon nanotubes inside the TEM. Carbon 43, 1026–1031 (2005)

    Article  Google Scholar 

  • Jin, C., Lan, H., Suenaga, K., Peng, L., Iijima, S.: Metal atom catalyzed enlargement of fullerenes. Phys. Rev. Lett. 101, 176102 (2008a)

    Article  ADS  Google Scholar 

  • Jin, C., Suenaga, K., Iijima, S.: Vacancy migrations in carbon nanotubes. Nano Lett. 8, 1127–1130 (2008b)

    Article  ADS  Google Scholar 

  • Junginger, F., Klaui, M., Backes, D., Rudiger, U., Kasama, T., Dunin-Borkowski, R.E., Heyderman, L.J., Vaz, C.A.F., Bland, J.A.C.: Spin torque and heating effects in current-induced domain wall motion probed by transmission electron microscopy. Appl. Phys. Lett. 90(13), 132506 (2007)

    Article  ADS  Google Scholar 

  • Kamihara, Y., Hiramatsu, H., Hirano, M., Kawamura, R., Yanagi, H., Kamiya, T., Hosono, H.: Iron-based layered superconductor: LaOFeP. J. Am. Chem. Soc. 128(31), 10012–10013 (2006)

    Article  Google Scholar 

  • Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H.: Iron-based layered superconductor La[O\(_{1-x}\)Fx]FeAs (\(x = 0.05-0.12\)) with \(Tc = 26\) K. J. Am. Chem. Soc. 130(11), 3296–3297 (2008)

    Article  Google Scholar 

  • Kandel, D., Kaxiras, E.: Microscopic theory of electromigration on semiconductor surfaces. Phys. Rev. Lett. 76, 1114 (1996)

    Article  ADS  Google Scholar 

  • Kaxiras, E., Duesbery, M.S.: Free energies of generalized stacking faults in Si and implications for the brittle-ductile transition. Phys. Rev. Lett. 70, 3752–3755 (1993)

    Article  ADS  Google Scholar 

  • Kiener, D., Minor, A.M.: Source truncation and exhaustion: insights from quantitative in situ TEM tensile testing. Nano Lett. 11, 3816–3820 (2011)

    Article  ADS  Google Scholar 

  • Kiener, D., Hosemann, P., Maloy, S.A., Minor, A.M.: In situ nanocompression testing of irradiated copper. Nat. Mater. 10, 608–613 (2011)

    Article  ADS  Google Scholar 

  • Koster, V.H., Hensel, F., Franck, E.U.: Kompressibilitat und thermische Ausdehnung des flussigen Galliums bis \(600\,^\circ \)C und 2500 bar. Ber. Bunsenges. Phys. Chem. 74, 43–46 (1970)

    Google Scholar 

  • Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., Smalley, R.E.: C-60 Buckminster-fullerene. Nature 318, 162–163 (1985)

    Article  ADS  Google Scholar 

  • Lang, K.M., Madhavan, V., Hoffman, J.E., Hudson, E.W., Eisaki, H., Uchida, S., Davis, J.C.: Imaging the granular structure of high-Tc superconductivity in underdoped Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_{8+\delta }\). Nature 415(6870), 412–416 (2002)

    Article  ADS  Google Scholar 

  • Lebegue, S.: Electronic structure and properties of the Fermi surface of the superconductor LaOFeP. Phys. Rev. B 75(3), 035110 (2007)

    Article  ADS  Google Scholar 

  • Legros, M., Dehm, G., Keller-Flaig, R.M., Arzt, E., Hemker, K.J., Suresh, S.: Dynamic observation of Al thin films plastically strained in a TEM. Mater. Sci. Eng. A 15, 463–467 (2001)

    Article  Google Scholar 

  • Legros, M., Gianola, D.S., Hemker, K.J.: In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films. Acta Mater. 56, 3380–3393 (2008)

    Article  Google Scholar 

  • Li, Y.B., Bando, Y., Golberg, D., Liu, Z.W.: Ga-filled single-crystalline MgO nanotube: wide-temperature range nanothermometer. Appl. Phys. Lett. 83, 999–1001 (2003a)

    Article  ADS  Google Scholar 

  • Li, Y.B., Bando, Y., Golberg, D.: Single-crystalline In\(_2\)O\(_3\) nanotubes filled with In. Adv. Mater. 15, 581–585 (2003b)

    Article  Google Scholar 

  • Li, S.Z., et al.: High-efficiency mechanical energy storage and retrieval using interfaces in nanowires. Nano Lett. 10, 1774–1779 (2010a)

    Article  ADS  Google Scholar 

  • Li, X.Y., Wei, Y.J., Lu, L., Lu, K., Gao, H.J.: Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature 464, 877–880 (2010b)

    Article  ADS  Google Scholar 

  • Lide, D.R.: Density of liquid elements surface tension of liquid elements vapor pressure. In: CRC Handbook of Chemistry and Physics, 71st edn, CRC, Ohio (1990–1991)

    Google Scholar 

  • Lin, L.T., Cui, T.R., Qin, L.C., Washburn, S.: Direct measurement of the friction between and shear moduli of shells of carbon nanotubes. Phys. Rev. Lett. 107, 206101 (2011)

    Article  ADS  Google Scholar 

  • Lipert, K., Bahr, S., Wolny, F., Atkinson, P., Weißker, U., Mühl, T., Schmidt, O.G., Büchner, B., Klingeler, R.: An individual iron nanowire-filled carbon nanotube probed by micro-Hall magnetometry. Appl. Phys. Lett. 97, 212503 (2010)

    Article  ADS  Google Scholar 

  • Liu, Z.W., Gao, Y.H., Bando, Y.: Highly effective metal vapor absorbents based on carbon nanotubes. Appl. Phys. Lett. 81, 4844–4846 (2002)

    Article  ADS  Google Scholar 

  • Liu, Z.W., Bando, Y., Mitome, M., Zhan, J.H.: Unusual freezing and melting of gallium encapsulated in carbon nanotubes. Phys. Rev. Lett. 93, 095504 (2004)

    Article  ADS  Google Scholar 

  • Liu, K.H., Gao, P., Xu, Z., Bai, X.D., Wang, E.G.: In situ probing electrical response on bending of ZnO nanowires inside transmission electron microscope. Appl. Phys. Lett. 92, 213105 (2008)

    Article  ADS  Google Scholar 

  • Liu, K.H., Wang, W.L., Xu, Z., Bai, X.D., Wang, E.G., Yao, Y.G., Zhang, J., Liu, Z.F.: Chirality-dependent transport properties of double-walled nanotubes measured in situ on their field-effect transistors. J. Am. Chem. Soc. 131, 62–63 (2009)

    Article  Google Scholar 

  • Liu, X.H., Zhang, L.Q., Zhong, L., Liu, Y., Zheng, H., Wang, J.W., Cho, J.H., Dayeh, S.A., Picraux, S.T., Sullivan, J.P., Mao, S.X., Ye, Z.Z., Huang, J.Y.: Ultrafast electrochemical lithiation of individual Si nanowire anodes. Nano Lett. 11, 2251–2258 (2011a)

    Article  ADS  Google Scholar 

  • Liu, Y., Zheng, H., Liu, X.H., Huang, S., Zhu, T., Wang, J.W., Kushima, A., Hudak, N.S., Huang, X., Zhang, S.L., Mao, S.X., Qian, X.F., Li, J., Huang, J.Y.: Lithiation-induced embrittlement of multiwalled carbon nanotubes. ACS Nano 5, 7245–7253 (2011b)

    Article  Google Scholar 

  • Liu, Y., Hudak, N.S., Huber, D.L., Limmer, S.J., Sullivan, J.P., Huang, J.Y.: In situ transmission electron microscopy observation of pulverization of aluminum nanowires and evolution of the thin surface Al\(_2\)O\(_3\) layers during lithiation-delithiation cycles. Nano Lett. 11, 4188–4194 (2011c)

    Article  ADS  Google Scholar 

  • Liu, Y., Zhang, Z.Y., Wei, X.L., Li, Q., Peng, L.M.: Simultaneous electrical and thermoelectric parameter retrieval via two terminal current-voltage measurements on individual ZnO nanowires. Adv. Funct. Mater. 21, 3900–3906 (2011d)

    Article  Google Scholar 

  • Loram, J.W., Mirza, K.A., Cooper, J.R., Liang, W.Y.: Electronic specific heat of YBa\(_2\)Cu\(_3\)O\(_6+x\) from 1.8 to 300 K. Phys. Rev. Lett. 71(11), 1740–1743 (1993)

    Article  ADS  Google Scholar 

  • Lu, L., Chen, X., Huang, X., Lu, K.: Revealing the maximum strength in nanotwinned copper. Science 323, 607–610 (2009)

    Article  ADS  Google Scholar 

  • Luo, W.D., Roundy, D., Cohen, M.L., Morris, J.W.: Ideal strength of BCC molybdenum and niobium. Phys. Rev. B 66, 094110 (2002)

    Article  ADS  Google Scholar 

  • Madec, R., Devincre, B., Kubin, L., Hoc, T., Rodney, D.: The role of collinear interaction in dislocation-induced hardening. Science 301, 1879–1882 (2003)

    Article  ADS  Google Scholar 

  • Mathur, N.: Nanotechnology-beyond the silicon roadmap. Nature 41, 9573–574 (2002)

    Google Scholar 

  • Michler, J., Wasmer, K., Meier, S., Östlund, F., Leifer, K.: Plastic deformation of gallium arsenide micropillars under uniaxial compression at room temperature. Appl. Phys. Lett. 90, 043123 (2007)

    Article  ADS  Google Scholar 

  • Millis, A.J., Monien, H.: Spin gaps and spin dynamics in La\(_{2-x}\)Sr\(_x\)CuO\(_4\) and YBa\(_2\)Cu\(_3\)O\(_{7-\delta }\). Phys. Rev. Lett. 70(18), 2810–2813 (1993)

    Article  ADS  Google Scholar 

  • Minor, A.M., Asif, S.A., Shan, Z., Stach, E.A., Cyrankowski, E., Wyrobek, T.J., Warren, O.L.: A new view of the onset of plasticity during the nanoindentation of aluminium. Nat. Mater. 5, 697–702 (2006)

    Article  ADS  Google Scholar 

  • Mitchell, T.E., Anderson, P.M., Baskes, M.I., Chen, S.P., Hoagland, R.G., Misra, A.: Nucleation of kink pairs on partial dislocations: a new model for solution hardening and softening. Philos. Mag. 83, 1329–1346 (2003)

    Article  ADS  Google Scholar 

  • Mompioua, F., Legrosa, M., Sedlmayrb, A., Gianolac, D.S., Caillarda, D., Kraft, O.: Source-based strengthening of sub-micrometer Al fibers. Acta Mater. 60, 977–983 (2006)

    Article  Google Scholar 

  • Nafari, A., Angenete, J., Svensson, K., Sanz-Velasco, A., Olin, H.: Combining scanning probe microscopy and transmission electron microscopy. In: Bhushan, B. (ed.) Scanning Probe Microscopy in Nanoscience and Nanotechnology 2, pp. 59–99. Springer, Berlin (2011)

    Chapter  Google Scholar 

  • Nagataki, A., Kawai, T., Miyamoto, Y., Suekane, O., Nakayama, Y.: Controlling atomic joints between carbon nanotubes by electric current. Phys. Rev. Lett. 102, 176808 (2009)

    Article  ADS  Google Scholar 

  • Nelson, C.T., Gao, P., Jokisaari, J.R., Heikes, C., Adamo, C., Melville, A., Baek, S.H., Folkman, C.M., Winchester, B., Gu, Y.J., Liu, Y.M., Zhang, K., Wang, E.G., Li, J.Y., Chen, L.Q., Eom, C.B., Schlom, D.G., Pan, X.Q.: Domain dynamics during ferroelectric switching. Science 334, 968–971 (2011)

    Article  ADS  Google Scholar 

  • Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  ADS  Google Scholar 

  • Ohnishi, H., Kondo, Y., Takayanagi, K.: Quantized conductance through individual rows of suspended gold atoms. Nature 395, 780–783 (1998)

    Article  ADS  Google Scholar 

  • Östlund, F., Malyska, K.R., Leifer, K., Hale, L.M., Tang, Y.Y., Ballarini, R., Gerberich, W.W., Michler, J.: Brittle-to-ductile transition in uniaxial compression of silicon pillars at room temperature. Adv. Funct. Mater. 19, 2439–2444 (2009)

    Article  Google Scholar 

  • Östlund, F., Howie, P.R., Ghisleni, R., Korte, S., Leifer, K., Clegg, W.J., Michler, J.: Ductile-brittle transition in micropillar compression of GaAs at room temperature. Phil. Mag. 91, 1190–1199 (2011)

    Article  ADS  Google Scholar 

  • Pan, X.L., Fan, Z.L., Chen, W., Ding, Y.J., Luo, H.Y., Bao, X.H.: Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nature Mater. 6, 507–511 (2007)

    Article  ADS  Google Scholar 

  • Parkin, S.S.P., Hayashi, M., Thomas, L.: Magnetic domain-wall racetrack memory. Science 320(5873), 190–194 (2008)

    Article  ADS  Google Scholar 

  • Pederson, M.R., Broghton, J.Q.: Nanocapillarity in fullerence tubules. Phys. Rev. Lett. 69, 2689–2692 (1992)

    Article  ADS  Google Scholar 

  • Peng, B., Locascio, M., Zapol, P., et al.: Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat. Nanotech. 3, 626–631 (2008)

    Article  Google Scholar 

  • Petkov, N.: In situ real-time TEM reveals growth, transformation and function in one-dimensional nanoscale materials: from a nanotechnology perspective. Nanotechnology 2013, 1–21 (2013)

    Google Scholar 

  • Pfleiderer, C., Uhlarz, M., Hayden, S.M., Vollmer, R., von Lohneysen, H., Bernhoeft, N.R., Lonzarich, G.G.: Coexistence of superconductivity and ferromagnetism in the d-band metal ZrZn\(_2\). Nature 412(6842), 58–61 (2001)

    Article  ADS  Google Scholar 

  • Polanyi, M.: Über die Natur des Zerreißvorganges. Z. Phys. 7, 323–327 (1921)

    Article  ADS  Google Scholar 

  • Regan, B.C., Aloni, S., Ritchie, R.O., Dahmen, U., Zettl, A.: Carbon nanotubes as nanoscale mass conveyors. Nature 428, 924–927 (2004)

    Article  ADS  Google Scholar 

  • Rodney, D., Phillips, R.: Structure and strength of dislocation junctions: an atomic level analysis. Phys. Rev. Lett. 82, 1704–1707 (1999)

    Article  ADS  Google Scholar 

  • Rose, H.: Outline of a spherically corrected semiaplanatic medium-voltage transmission electron-microscope. Optik 85(1), 19–24 (1990)

    Google Scholar 

  • Rous, P.J., Bly, D.N.: Wind force for adatom electromigration on hetero-geneous surfaces. Phys. Rev. B. 62, 8478 (2000)

    Article  ADS  Google Scholar 

  • Schattschneider, P., Rubino, S., Hébert, C., Rusz, J., Kune, J., Novák, P., Carlino, E., Fabrizioli, M., Panaccione, G., Rossi, G.: Detection of magnetic circular dichroism using a transmission electron microscope. Nature 441(7092), 486–488 (2006)

    Article  ADS  Google Scholar 

  • Schiotz, J., Jacobson, K.W.: A maximum in the strength of nanocrystalline copper. Science 301, 1357–1359 (2003)

    Article  ADS  Google Scholar 

  • Shan, Z.W., Mishra, R.K., Asif, S.A.S., Warren, O.L., Minor, A.M.: Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 7, 115–119 (2008)

    Article  ADS  Google Scholar 

  • Shechtman, D., Blech, I., Gratias, D., Cahn, J.: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984)

    Article  ADS  Google Scholar 

  • Shi, C.X., Cong, H.T.: Tuning the coercivity of Fe-filled carbon-nanotube arrays by changing the shape anisotropy of the encapsulated Fe nanoparticles. J. Appl. Phys. 104, 034307 (2008)

    Article  ADS  Google Scholar 

  • Shimizu, K., Kimura, T., Furomoto, S., Takeda, K., Kontani, K., Onuki, Y., Amaya, K.: Superconductivity in the nonmagnetic state of iron under pressure. Nature 412(6844), 316–318 (2001)

    Article  ADS  Google Scholar 

  • Shpyrko, O.G., Streitel, R., Balagurusamy, V.S.K., Grigoriev, A.Y., Deutsch, M., Ocko, B.M., Meron, M., Lin, B.H., Pershan, P.S.: Surface crystallization in a liquid AuSi alloy. Science 31, 377 (2006)

    Google Scholar 

  • Smith, D.J., Dunin-Borkowski, R.E., McCartney, M.R., Kardynal, B., Scheinfein, M.R.: Interlayer coupling within individual submicron magnetic elements. J. Appl. Phys. 87(10), 7400–7404 (2000)

    Article  ADS  Google Scholar 

  • Smith, D.A., Holmberg, V.C., Korgel, B.A.: Flexible germanium nanowires: ideal strength, room temperature plasticity, and bendable semiconductor fabric. ACS Nano 4, 2356–2362 (2010)

    Article  Google Scholar 

  • Soldano, C., Rossella, F., Bellani, V., Giudicatti, S., Kar, S.: Cobalt nanocluster-filled carbon nanotube arrays: engineered photonic bandgap and optical reflectivity. ACS Nano 4, 6573–6578 (2010)

    Article  Google Scholar 

  • Sorbello, R.S.: Theory of electromigration. Solid State Phys. 51, 159 (1998)

    Article  Google Scholar 

  • Stauffer, D.D., Beaber, A., Wagner, A., Ugurlu, O., Nowak, J.L., Mkhoyan, K.A., Girshick, S., Gerberich, W.W.: Strain-hardening in submicron silicon pillars and spheres. Acta Mater. 60, 2471–2478 (2012)

    Article  Google Scholar 

  • Su, J., Sun, M., Zhang, X.H., Huang, Y.L., Gao, Y.H.: Ga filled nanothermometers with high sensitivity and wide measuring range. J. Nanosci. Nanotechnol. 12, 6397–6400 (2012)

    Article  Google Scholar 

  • Sun, M., Gao, Y.H.: Electrically driven gallium movement in carbon nanotubes. Nanotechnology 23, 065704 (2012)

    Article  ADS  Google Scholar 

  • Svensson, K., Olin, H., Olsson, E.: Nanopipettes for metal transport. Phys. Rev. Lett. 93, 145901 (2004)

    Article  ADS  Google Scholar 

  • Takeguchi, M., Shimojo, M., Furuya, K.: Fabrication of magnetic nanostructures using electron beam induced chemical vapour deposition. Nanotechnology 16(8), 1321–1325 (2005)

    Article  ADS  Google Scholar 

  • Tang, D.M., Yin, L.C., Li, F., Liu, C., Yu, W.J., Hou, P.X., Wu, B., Lee, Y.H., Ma, X.L., Cheng, H.M.: Carbon nanotube-clamped metal atomic chain. Proc. Natl. Acad. Sci. USA 107, 9055–9059 (2010)

    Article  ADS  Google Scholar 

  • Tang, D.M., Ren, C.L., Wang, M.S., Wei, X.L., Kawamoto, N., Liu, C., Bando, Y., Mitome, M., Fukata, N., Golberg, D.: Mechanical properties of Si nanowires as revealed by in situ transmission electron microscopy and molecular dynamics simulations. Nano Lett. 12, 1898–1904 (2012)

    Article  ADS  Google Scholar 

  • Tibbetts, G.G.: Why are carbon filaments tubular? J. Cryst. Growth 66, 632–638 (1984)

    Article  ADS  Google Scholar 

  • Tokura, Y., Nagaosa, N.: Orbital physics in transition-metal oxides. Science 288(5465), 462–468 (2000)

    Article  ADS  Google Scholar 

  • Tonomura, A., Matsuda, T., Endo, J.: Direct observation of fine structure of magnetic domain walls by electron holography. Phys. Rev. Lett. 44(21), 1430–1433 (1980)

    Article  ADS  Google Scholar 

  • Van Dyck, D., Van Aert, S., den Dekker, A.J., van den Bos, A.: Is atomic resolution transmission electron microscopy able to resolve and refine amorphous structures. Ultramicroscopy 98(1), 27–42 (2003)

    Article  Google Scholar 

  • Van Swygenhoven, H.: Grain boundaries and dislocations. Science 296, 66–67 (2002)

    Article  Google Scholar 

  • Van Tendeloo, G., Bals, S., Van Aert, S., Verbeeck, J., Van Dyck, D.: Advanced electron microscopy for advanced materials. Adv. Mater. 24(42), 5655–5675 (2012)

    Article  Google Scholar 

  • Wang, D., Li, F.H., Zou, J.: Distinguishing glide and shuffle types for \(60^\circ \) dislocation in semicoductors by field-emission HREM image processing. Ultramicroscopy 85, 131–139 (2000a)

    Article  Google Scholar 

  • Wang, Z.L., Poncharal, P., de Heer, W.A.: Nanomeasurements in transmission electron microscopy. Microsc. Microanal. 6, 224–230 (2000b)

    ADS  Google Scholar 

  • Wang, Z.L., Gao, R.P., de Heer, W.A., Poncharal, P.: In situ imaging of field emission from individual carbon nanotubes and their structural damage. Appl. Phys. Lett. 80, 856–858 (2002)

    Article  ADS  Google Scholar 

  • Wang, M.S., Chen, Q., Peng, L.M.: Field-emission characteristics of individual carbon nanotubes with a conical tip: the validity of the fowler-nordheim theory and maximum emission current. Small 4, 1907–1912 (2008a)

    Article  Google Scholar 

  • Wang, M.S., Chen, Q., Peng, L.M.: Grinding a nanotube. Adv. Mater. 20, 724–728 (2008b)

    Article  Google Scholar 

  • Wang, L.H., Han, X.D., Liu, P., Yue, Y.H., Zhang, Z., Ma, E.: In situ observation of dislocation behavior in nanometer grains. Phys. Rev. Lett. 105, 135501 (2010a)

    Article  ADS  Google Scholar 

  • Wang, M.S., Golberg, D., Bando, Y.: Carbon “Onions” as point electron sources. ACS Nano 4, 4396–4402 (2010b)

    Article  Google Scholar 

  • Wang, L.H., Zhang, Z., Han, X.D.: In situ experimental mechanics of nanomaterials at the atomic scale. NPG Asia Mater. 5, 40 (2013a)

    Article  Google Scholar 

  • Wang, L.H., Liu, P., Guan, P.F., Yang, M.J., Sun, J.L., Cheng, Y.Q., Hirata, A., Zhang, Z., Ma, E., Chen, M.W., Han, X.D.: In situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit. Nat. Commun. 4, 2413 (2013b)

    Article  ADS  Google Scholar 

  • Wei, W., Liu, Y., Wei, Y., Jiang, K.L., Peng, L.M., Fan, S.S.: Tip cooling effect and failure mechanism of field-emitting carbon nanotubes. Nano Lett. 7, 64–68 (2007)

    Article  ADS  Google Scholar 

  • Wei, X.L., Wang, M.S., Bando, Y., Golberg, D.: Tensile tests on individual multi-walled boron nitride nanotubes. Adv. Mater. 22, 4895–4899 (2010)

    Article  Google Scholar 

  • Wei, B., Zheng, K., Ji, Y., Zhang, Y.F., Zhang, Z., Han, X.D.: Size-dependent bandgap modulation of ZnO nanowires by tensile strain. Nano Lett. 12, 4595–4599 (2012)

    Article  ADS  Google Scholar 

  • Wei, X.L., Bando, Y., Golberg, D.: Electron emission from individual graphene nanoribbons driven by internal electric field. ACS Nano 6, 705–711 (2012)

    Article  Google Scholar 

  • Wen, H.H., Mu, G., Fang, L., Yang, H., Zhu, X.Y.: Superconductivity at 25K in hole-doped (La\(_(1-x)\)Sr\(_4(x)\))OFeAs. Europhys. Lett. 82(1), 17009 (2008)

    Article  ADS  Google Scholar 

  • Williams, D.B., Carter, C.B.: Transmission Electron Microscopy, 2nd edn, p. 112. Plenum, New York (1996)

    Book  Google Scholar 

  • Wu, Y.Z., Won, C., Scholl, A., Doran, A., Zhao, H.W., Jin, X.F., Qiu, Z.Q.: Magnetic stripe domains in coupled magnetic sandwiches. Phys. Rev. Lett. 93(11), 117205 (2004)

    Article  ADS  Google Scholar 

  • Wu, B., Heidelberg, A., Boland, J.J.: Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 4, 525–529 (2005)

    Article  ADS  Google Scholar 

  • XianLong, W., Qing, C., Yang, L., LianMao, P.: Cutting and sharpening carbon nanotubes using a carbon nanotube ‘nanoknife’. Nanotechnology 18, 185503 (2007)

    Article  Google Scholar 

  • Xiong, F., Liao, A.D., Estrada, D., Pop, E.: Low-power switching of phase-change materials with carbon nanotube electrodes. Science 332, 568–570 (2011)

    Article  ADS  Google Scholar 

  • Xu, Z., Bai, X.D., Wang, E.G., Wang, Z.L.: Dynamic in situ field emission of a nanotube at electromechanical resonance. J. Phys. Condens. Matter 17, L507–L512 (2005)

    Article  ADS  Google Scholar 

  • Xu, Z., Bando, Y., Wang, W.L., Bai, X.D., Golberg, D.: Real-time in situ HRTEM-resolved resistance switching of Ag\(_2\)S nanoscale ionic conductor. ACS Nano 4, 2515–2522 (2010)

    Article  Google Scholar 

  • Yang, Y., Gao, P., Gaba, S., Chang, T., Pan, X., Lu, W.: Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732 (2012)

    Article  ADS  Google Scholar 

  • Yip, S.: Nanocrystals: the strongest size. Nature 391, 532–533 (1998)

    Article  ADS  Google Scholar 

  • Yue, Y.H., Liu, P., Zhang, Z., Han, X.D., Ma, E.: Approaching the theoretical elastic limit in copper nanowires. Nano Lett. 11, 3151–3155 (2011)

    Article  ADS  Google Scholar 

  • Yue, Y.H., Liu, P., Deng, Q.S., Ma, E., Zhang, Z., Han, X.D.: Quantitative evidence of crossover toward partial dislocation mediated plasticity in copper single crystalline nanowires. Nano Lett. 12(8), 4045–4049 (2012a)

    Article  ADS  Google Scholar 

  • Yue, Y.H., Wang, L.H., Zhang, Z., Han, X.D.: Cross-over of the plasticity mechanism in nanocrystalline Cu. Chin. Phys. Lett. 29, 066201 (2012b)

    Article  ADS  Google Scholar 

  • Zhan, J.H., Bando, Y., Hu, J.Q., Golberg, D., Nakanishi, H.J.: Liquid gallium columns sheathed with carbon: bulk synthesis and manipulation. J. Phys. Chem. B 109, 11580–11584 (2005a)

    Article  Google Scholar 

  • Zhan, J.H., Bando, Y., Hu, J.Q., Liu, Z.W., Yin, L.W., Golberg, D.: Fabrication of metal-semiconductor nanowire heterojunctions. Angew. Chem. Int. Ed. 44, 2140–2144 (2005b)

    Article  Google Scholar 

  • Zhang, Z.Y., Jin, C.H., Liang, X.L., Chen, Q., Peng, L.M.: Current-voltage characteristics and parameter retrieval of semiconducting nanowires, Appl. Phys. Lett. 89 (2006)

    Google Scholar 

  • Zhang, Y.F., Han, X.D., Zheng, K., Zhang, Z.: Direct observation of super-plasticity of beta-SiC nanowires at low temperature. Adv. Fun. Mater. 17, 3435–3440 (2007)

    Article  Google Scholar 

  • Zhang, Z.H., Wang, X.F., Xu, J.B., Muller, S., Ronning, C., Li, Q.: Evidence of intrinsic ferromagnetism in individual dilute magnetic semiconducting nanostructures. Nat. Nanotechnol. 4(8), 523–527 (2009)

    Article  ADS  Google Scholar 

  • Zhao, J., Huang, J.Q., Wei, F., Zhu, J.: Mass transportation mechanism in electric-biased carbon nanotubes. Nano Lett. 10, 4309–4315 (2010)

    Article  ADS  Google Scholar 

  • Zheng, H., Cao, A.J., Weinberger, C.R., Huang, J.Y., Du, K., Wang, J.B., Ma, Y.Y., Xia, Y.N., Mao, S.X.: Discrete plasticity in sub-10nm-sized gold crystals. Nat. Commun. 1, 144 (2010a)

    Google Scholar 

  • Zheng, K., Wang, C.C., Cheng, Y.Q., Yue, Y.H., Han, X.D., Zhang, Z., Shan, Z.W., Mao, S.X., Ye, M.M., Yin, Y.D., Ma, E.: Electron-beam-assisted superplastic shaping of nanoscale amorphous silica. Nat. Commun. 1, 24 (2010b)

    Google Scholar 

  • Zhong, L., Liu, X.H., Wang, G.F., Mao, S.X., Huang, J.Y.: Multiple-stripe lithiation mechanism of individual SnO\(_2\) nanowires in a flooding geometry. Phys. Rev. Lett. 106 (2011)

    Google Scholar 

  • Zhu, Y., Espinosa, H.D.: An electromechanical material testing system for in situ electron microscopy and applications. Proc. Natl. Acad. Sci. USA 102, 14503–14508 (2005)

    Article  ADS  Google Scholar 

  • Zhu, T., Li, J.: Ultra-strength materials. Prog. Mater. Sci. 55, 710–757 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuedong Bai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Peking University Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zheng, K. et al. (2018). In Situ TEM: Theory and Applications. In: Wang, R., Wang, C., Zhang, H., Tao, J., Bai, X. (eds) Progress in Nanoscale Characterization and Manipulation. Springer Tracts in Modern Physics, vol 272. Springer, Singapore. https://doi.org/10.1007/978-981-13-0454-5_7

Download citation

Publish with us

Policies and ethics