Skip to main content

Introduction to Compliant Mechanisms and Design Methods

  • Chapter
  • First Online:
  • 3013 Accesses

Abstract

“Compliant mechanisms” often refers to monolithic or jointless structures that transfer an input force or displacement to another point through elastic deformation. The intrinsic advantages associated with compliant mechanisms include their lack of a need for lubrication and assembly and their high accuracy. These advantages make compliant mechanisms extremely suitable for precision engineering applications that require nanometer or even subnanometer positioning accuracy. This introductory chapter briefly presents compliant mechanisms, their applications and the associated design approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Allaire, G., Jouve, F.: Optimal design of micro-mechanisms by the homogenization method. Revue Européenne des Eléments 11(2–4), 405–416 (2002)

    Article  MATH  Google Scholar 

  2. Allaire, G., Jouve, F., Michailidis, G.: Thickness control in structural optimization via a level set method. Structural Multidisciplinary Optimization 53(6), 1349–1382 (2016)

    Article  MathSciNet  Google Scholar 

  3. Allaire, G., Jouve, F., Toader, A.M.: A level-set method for shape optimization. C.R. Math. 334(12), 1125–1130 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ananthasuresh, G., Kota, S., Gianchandani, Y.: Systematic synthesis of microcompliant mechanisms-preliminary results. In: National Applied Mechanisms and Robotics Conference, Cincinnati, OH, November, Paper, vol. 82 (1993)

    Google Scholar 

  5. Andersen, K.N., Carlson, K., Petersen, D.H., Eichhorn, V., Fatikow, S.: Electrothermal microgrippers for pick-and-place operations. Microelectron. Eng. 85(5–6), 1128–1130 (2008)

    Article  Google Scholar 

  6. Ansola, R., Vegueria, E., Canales, J.: An element addition strategy for thermally actuated compliant mechanism topology optimization. Eng. Comput. 27(6), 694–711 (2010)

    Article  MATH  Google Scholar 

  7. Ansola, R., Veguería, E., Canales, J., Alonso, C.: Evolutionary optimization of compliant mechanisms subjected to non-uniform thermal effects. Finite Elem. Anal. Des. 57, 1–14 (2012)

    Article  Google Scholar 

  8. Ansola, R., Veguería, E., Canales, J., Tárrago, J.A.: A simple evolutionary topology optimization procedure for compliant mechanism design. Finite Elem. Anal. Des. 44(1), 53–62 (2007)

    Article  Google Scholar 

  9. Azamirad, G., Arezoo, B.: Structural design of stamping die components using bi-directional evolutionary structural optimization method. Int. J. Adv. Manufacturing Technol. 87(1–4), 969–979 (2016)

    Article  Google Scholar 

  10. Barthelemy, J.F., Haftka, R.T.: Approximation concepts for optimum structural designła review. Structural Optimization 5(3), 129–144 (1993)

    Article  Google Scholar 

  11. Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71(2), 197–224 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bendsøe, M.P., Sigmund, O.: Material interpolation schemes in topology optimization. Arch. Appl. Mech. 69(9), 635–654 (1999)

    MATH  Google Scholar 

  13. Bendsøe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods and Applications. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  14. Bogue, R.: Recent developments in mems sensors: a review of applications, markets and technologies. Sensor Rev. 33(4), 300–304 (2013)

    Article  Google Scholar 

  15. Challis, V.J.: A discrete level-set topology optimization code written in Matlab. Structural Multidisciplinary Optimization 41(3), 453–464 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, S.K., Gonella, S., Chen, W., Liu, W.K.: A level set approach for optimal design of smart energy harvesters. Comput. Methods Appl. Mech. Eng. 199(37–40), 2532–2543 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cho, S., Kwak, J.: Topology design optimization of geometrically non-linear structures using meshfree method. Comput. Methods Appl. Mech. Eng. 195(44), 5909–5925 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Choi, K.K., Kim, N.H.: Structural Sensitivity Analysis and Optimization 1: Linear Systems. Springer Science & Business Media (2006)

    Google Scholar 

  19. Choi, Y., Ross, J., Wester, B., Allen, M.G.: Mechanically driven microtweezers with integrated microelectrodes. J. Micromech. Microeng. 18(6), 065,004 (2008)

    Article  Google Scholar 

  20. Deaton, J.D., Grandhi, R.V.: A survey of structural and multidisciplinary continuum topology optimization: post 2000. Structural Multidisciplinary Optimization 49(1), 1–38 (2014)

    Article  MathSciNet  Google Scholar 

  21. Diaz, A., Sigmund, O.: Checkerboard patterns in layout optimization. Structural Optimization 10(1), 40–45 (1995)

    Article  Google Scholar 

  22. van Dijk, N.P., Maute, K., Langelaar, M., Van Keulen, F.: Level-set methods for structural topology optimization: a review. Structural Multidisciplinary Optimization 48(3), 437–472 (2013)

    Article  MathSciNet  Google Scholar 

  23. Dorn, W.S.: Automatic design of optimal structures. Journal de Mecanique 3, 25–52 (1964)

    Google Scholar 

  24. Eschenauer, H.A., Kobelev, V.V., Schumacher, A.: Bubble method for topology and shape optimization of structures. Structural Optimization 8(1), 42–51 (1994)

    Article  Google Scholar 

  25. Fancello, E.A.: Topology optimization for minimum mass design considering local failure constraints and contact boundary conditions. Structural Multidisciplinary Optimization 32(3), 229–240 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fatikow, S., Rembold, U.: Microsystem Technology and Microrobotics. Springer (1997)

    Google Scholar 

  27. Fleury, C.: Structural weight optimization by dual methods of convex programming. Int. J. Numer. Meth. Eng. 14(12), 1761–1783 (1979)

    Article  MATH  Google Scholar 

  28. Frecker, M., Ananthasuresh, G., Nishiwaki, S., Kikuchi, N., Kota, S.: Topological synthesis of compliant mechanisms using multi-criteria optimization. J. Mech. Des. 119(2), 238–245 (1997)

    Article  Google Scholar 

  29. Frei, W., Tortorelli, D., Johnson, H.: Geometry projection method for optimizing photonic nanostructures. Opt. Lett. 32(1), 77–79 (2007)

    Article  Google Scholar 

  30. Furukawa, E., Mizuno, M.: Piezo-driven translation mechanisms utilizing linkages. J. Jpn. Soc. Precis. Eng. 58(1), 127–132 (1992)

    Article  Google Scholar 

  31. Guo, X., Zhang, W., Zhong, W.: Explicit feature control in structural topology optimization via level set method. Comput. Methods Appl. Mech. Eng. 272, 354–378 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hassini, B., Hinton, E.: A review of homogenization and topology optimization I to III. Comput. Struct. 69, 707–756 (1998)

    Article  Google Scholar 

  33. He, L., Kao, C.Y., Osher, S.: Incorporating topological derivatives into shape derivatives based level set methods. J. Comput. Phys. 225(1), 891–909 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Heo, S., Kim, Y.Y.: Optimal design and fabrication of mems rotary thermal actuators. J. Micromech. Microeng. 17(11), 2241 (2007)

    Article  Google Scholar 

  35. Howell, L.L.: Compliant Mechanisms. Wiley (2001)

    Google Scholar 

  36. Howell, L.L., Midha, A.: Parametric deflection approximations for end-loaded, large-deflection beams in compliant mechanisms. ASME J. Mech. Des. 117(1), 156–165 (1995)

    Article  Google Scholar 

  37. Huang, X., Xie, Y.M.: A further review of ESO type methods for topology optimization. Structural Multidisciplinary Optimization 41(5), 671–683 (2010)

    Article  Google Scholar 

  38. Huang, X., Zhou, S., Xie, Y., Li, Q.: Topology optimization of microstructures of cellular materials and composites for macrostructures. Comput. Mater. Sci. 67, 397–407 (2013)

    Article  Google Scholar 

  39. Jensen, B.D., Howell, L.L.: The modeling of cross-axis flexural pivots. Mech. Mach. Theory 37(5), 461–476 (2002)

    Article  MATH  Google Scholar 

  40. Jiang, L., Chen, S.: Parametric structural shape & topology optimization with a variational distance-regularized level set method. Comput. Methods Appl. Mech. Eng. 321, 316–336 (2017)

    Google Scholar 

  41. Jog, C.S., Haber, R.B.: Stability of finite element models for distributed-parameter optimization and topology design. Comput. Methods Appl. Mech. Eng. 130(3–4), 203–226 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  42. Joo, J., Kota, S.: Topological synthesis of compliant mechanisms using nonlinear beam elements. Mech. Based Des. Structures Mach. 32(1), 17–38 (2004)

    Article  Google Scholar 

  43. Joo, J., Kota, S., Kikuchi, N.: Topological synthesis of compliant mechanisms using linear beam elements. Mech. Structures Mach. 28(4), 245–280 (2000)

    Article  Google Scholar 

  44. Kinoshita, T., Ohsaki, M.: Synthesis of bistable compliant structures from Truss mechanisms. J. Comput. Sci. Technol. 3(2), 417–425 (2009)

    Article  Google Scholar 

  45. Kota, S., Ananthasuresh, G.: Designing compliant mechanisms. Mech. Eng. CIME 117(11), 93–97 (1995)

    Google Scholar 

  46. Lee, K.M., Arjunan, S.: A three-degrees-of-freedom micromotion in-parallel actuated manipulator. IEEE Trans. Robot. Automation 7(5), 634–641 (1991)

    Article  Google Scholar 

  47. Li, H., Zhang, X., Wu, H., Gan, J.: Line-based calibration of a micro-vision motion measurement system. Opt. Lasers Eng. 93, 40–46 (2017)

    Article  Google Scholar 

  48. Li, H., Zhang, X.M., Zeng, L., Huang, Y.J.: A monocular vision system for online pose measurement of a 3RRR planar parallel manipulator. J. Intell. Rob. Syst. 2, 1–15 (2017)

    Google Scholar 

  49. Li, Z., Zhang, X.: Reliability-based topology optimization of compliant micro-gripper with geometrical nonlinearity. J South China Univ. Technol. (Natural Science Edition) 8, 023 (2008)

    Google Scholar 

  50. Li, Z., Zhang, X.: Topology optimization of multiple inputs and outputs compliant mechanisms with geometrically nonlinearity. Chin. J. Mech. Eng. 45(1), 180–188 (2009)

    Article  Google Scholar 

  51. Liu, P., Luo, Y., Kang, Z.: Multi-material topology optimization considering interface behavior via XFEM and level set method. Comput. Methods Appl. Mech. Eng. 308, 113–133 (2016)

    Article  MathSciNet  Google Scholar 

  52. Luo, J., Luo, Z., Chen, L., Tong, L., Wang, M.Y.: A semi-implicit level set method for structural shape and topology optimization. J. Comput. Phys. 227(11), 5561–5581 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  53. Luo, Z., Tong, L., Wang, M.Y., Wang, S.: Shape and topology optimization of compliant mechanisms using a parameterization level set method. J. Comput. Phys. 227(1), 680–705 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  54. Luo, Z., Wang, M.Y., Wang, S., Wei, P.: A level set-based parameterization method for structural shape and topology optimization. Int. J. Numer. Meth. Eng. 76(1), 1–26 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  55. Ma, Z.D., Kikuchi, N., Cheng, H.C.: Topological design for vibrating structures. Comput. Methods Appl. Mech. Eng. 121(s 1C4), 259–280 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  56. Ma, Z.D., Kikuchi, N., Hagiwara, I.: Structural topology and shape optimization for a frequency response problem. Comput. Mech. 13(3), 157–174 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  57. Mankame, N.D., Ananthasuresh, G.: Topology synthesis of electrothermal compliant mechanisms using line elements. Structural Multidisciplinary Optimization 26(3), 209–218 (2004)

    Article  Google Scholar 

  58. Maute, K., Kreissl, S., Makhija, D., Yang, R.: Topology optimization of heat conduction in nano-composites. In: 9th World Congress on Structural and Multidisciplinary Optimization, Shizuoka, Japan (2011)

    Google Scholar 

  59. Mei, Y., Wang, X.: A level set method for structural topology optimization and its applications. Adv. Eng. Softw. 35(7), 415–441 (2004)

    Google Scholar 

  60. Myśliński, A.: Level set method for optimization of contact problems. Eng. Anal. Boundary Elem. 32(11), 986–994 (2008)

    Article  MATH  Google Scholar 

  61. Nishiwaki, S., Frecker, M.I., Min, S., Kikuchi, N.: Topology optimization of compliant mechanisms using the homogenization method. Int. J. Numer. Meth. Engng. 42, 535–559 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  62. Novotny, A.A., Sokołowski, J.: Topological Derivatives in Shape Optimization. Springer Science & Business Media (2012)

    Google Scholar 

  63. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2002)

    MATH  Google Scholar 

  64. Osher, S., Santosa, F.: Level-set methods for optimization problem involving geometry and constraints: I. Frequencies of a two-density inhomogeneous drum. J. Comput. Phys. 171(1), 272–288 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  65. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  66. Ouyang, P.R., Tjiptoprodjo, R.C., Zhang, W.J., Yang, G.S.: Micro-motion devices technology: the state of arts review. Int. J. Adv. Manuf. Technol. 38(5–6), 463–478 (2008)

    Article  Google Scholar 

  67. Querin, O., Steven, G., Xie, Y.: Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Eng. Comput. 15(8), 1031–1048 (1998)

    Article  MATH  Google Scholar 

  68. Rai, A.K., Saxena, A., Mankame, N.D.: Unified synthesis of compact planar path-generating linkages with rigid and deformable members. Structural Multidisciplinary Optimization 41(6), 863 (2010)

    Article  Google Scholar 

  69. Ramrakhyani, D.S., Frecker, M.I., Lesieutre, G.A.: Hinged beam elements for the topology design of compliant mechanisms using the ground structure approach. Structural Multidisciplinary Optimization 37(6), 557–567 (2009)

    Article  Google Scholar 

  70. Rietz, A.: Sufficiency of a finite exponent in simp (power law) methods. Structural Multidisciplinary Optimization 21(2), 159–163 (2001)

    Article  Google Scholar 

  71. Rozvany, G.: Stress ratio and compliance based methods in topology optimization-a critical review. Structural Multidisciplinary Optimization 21(2), 109–119 (2001)

    Article  MathSciNet  Google Scholar 

  72. Rozvany, G.I.: A critical review of established methods of structural topology optimization. Structural Multidisciplinary Optimization 37(3), 217–237 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  73. Sardan, O., Eichhorn, V., Petersen, D., Fatikow, S., Sigmund, O., Bøggild, P.: Rapid prototyping of nanotube-based devices using topology-optimized microgrippers. Nanotechnology 19(49), 495,503 (2008)

    Article  Google Scholar 

  74. Saxena, A., Ananthasuresh, G.: On an optimal property of compliant topologies. Structural Multidisciplinary Optimization 19(1), 36–49 (2000)

    Article  Google Scholar 

  75. Saxena, A., Ananthasuresh, G.: Topology optimization of compliant mechanisms with strength considerations. Mech. Structures Mach. 29(2), 199–221 (2001)

    Article  Google Scholar 

  76. Saxena, A., Ananthasuresh, G.: Topology synthesis of compliant mechanisms for nonlinear force-deflection and curved path specifications. J. Mech. Des. 123(1), 33–42 (2001)

    Article  Google Scholar 

  77. Scire, F.E., Teague, E.C.: Piezodriven 50-\(\upmu \)m range stage with subnanometer resolution. Rev. Sci. Instrum. 49(12), 1735 (1978)

    Article  Google Scholar 

  78. Sethain, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Omputer Version, and Material Science. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  79. Sethian, J.A., Wiegmann, A.: Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163(2), 489–528 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  80. Shi, H., Shi, W., Zhang, R., Zhai, J., Chu, J., Dong, S.: A micromachined piezoelectric microgripper for manipulation of micro/nanomaterials. Rev. Sci. Instrum. 88(6), 235 (2017)

    Article  Google Scholar 

  81. Sigmund, O.: Design of Materials Structures Using Topology Optimization. Technical University of Denmark, Department of Solid Mechanics (1994)

    Google Scholar 

  82. Sigmund, O.: On the design of compliant mechanisms using topology optimization. Mech. Structures Mach. 25(4), 493–524 (1997)

    Article  Google Scholar 

  83. Sigmund, O.: Design of multiphysics actuators using topology optimization-part I: One-material structures. Comput. Methods Appl. Mech. Eng. 190(49), 6577–6604 (2001)

    Article  MATH  Google Scholar 

  84. Sigmund, O.: Morphology-based black and white filters for topology optimization. Structural Multidisciplinary Optimization 33(4–5), 401–424 (2007)

    Article  Google Scholar 

  85. Sigmund, O.: On the usefulness of non-gradient approaches in topology optimization. Structural Multidisciplinary Optimization 43(5), 589–596 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  86. Sigmund, O., Petersson, J.: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural Optimization 16(1), 68–75 (1998)

    Article  Google Scholar 

  87. Sokolowski, J., Zolesio, J.P.: Introduction to Shape Optimization. In: Introduction to Shape Optimization, pp. 5–12. Springer (1992)

    Chapter  MATH  Google Scholar 

  88. Svanberg, K.: The method of moving asymptotesła new method for structural optimization. Int. J. Numer. Meth. Eng. 24(2), 359–373 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  89. Takezawa, A., Nishiwaki, S., Kitamura, M.: Shape and topology optimization based on the phase field method and sensitivity analysis. J. Comput. Phys. 229(7), 2697–2718 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  90. Tang, H., Li, Y.: Development and active disturbance rejection control of a compliant micro-/nanopositioning piezostage with dual mode. IEEE Trans. Industr. Electron. 61(3), 1475–1492 (2013)

    Article  Google Scholar 

  91. Tanskanen, P.: The evolutionary structural optimization method: theoretical aspects. Comput. Methods Appl. Mech. Eng. 191(47), 5485–5498 (2002)

    Article  MATH  Google Scholar 

  92. Tran, A.V., Zhang, X., Zhu, B.: The development of a new piezoresistive pressure sensor for low pressures. IEEE Tran. Industrial Electronics (2017)

    Google Scholar 

  93. Uicker, J.J., Pennock, G.R., Shigley, J.E., et al.: Theory of Machines and Mechanisms, vol. 1. Oxford University Press, New York (2011)

    Google Scholar 

  94. Vicente, W.M., Picelli, R., Pavanello, R., Xie, Y.M.: Topology optimization of frequency responses of fluidcstructure interaction systems. Finite Elem. Anal. Des. 98, 1–13 (2015)

    Article  Google Scholar 

  95. Wang, H., Zhang, X.: Input coupling analysis and optimal design of a 3-DOF compliant micro-positioning stage. Mech. Mach. Theory 43(4), 400–410 (2008)

    Article  MATH  Google Scholar 

  96. Wang, M.Y., Wang, X., Guo, D.: A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192(1), 227–246 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  97. Wang, N., Zhang, X.: Compliant mechanisms design based on pairs of curves. Sci. China Technol. Sci. 55(8), 2099–2106 (2012)

    Article  Google Scholar 

  98. Wang, R., Zhang, X.: Design and test of a novel planar 3-DOF precision positioning platform with a large magnification. In: International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale, pp. 236–243 (2014)

    Google Scholar 

  99. Wang, R., Zhang, X.: Preload characteristics identification of the piezoelectric- actuated 1-DOF compliant nanopositioning platform. Frontiers Mech. Eng. 10(1), 20–36 (2015)

    Article  MathSciNet  Google Scholar 

  100. Wang, R., Zhang, X.: A planar 3-DOF nanopositioning platform with large magnification. Precis. Eng. 46, 221–231 (2016)

    Article  Google Scholar 

  101. Wang, R., Zhang, X.: Optimal design of a planar parallel 3-DOF nanopositioner with multi-objective. Mech. Mach. Theory 112, 61–83 (2017)

    Article  Google Scholar 

  102. Wang, R., Zhang, X.: Parameters optimization and experiment of a planar parallel 3-dof nanopositioning system. IEEE Trans. Industrial Electron. PP(99), 1–1 (2017)

    Google Scholar 

  103. Wang, S., Wang, M.Y.: Radial basis functions and level set method for structural topology optimization. Int. J. Numer. Meth. Eng. 65(12), 2060–2090 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  104. Wang, X., Wang, M., Guo, D.: Structural shape and topology optimization in a level-set-based framework of region representation. Structural Multidisciplinary Optimization 27(1–2), 1–19 (2004)

    Article  MathSciNet  Google Scholar 

  105. Wei, P., Wang, M.Y.: Piecewise constant level set method for structural topology optimization. Int. J. Numer. Meth. Eng. 78(4), 379–402 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  106. Wittwer, J.W., Chase, K.W., Howell, L.L.: The direct linearization method applied to position error in kinematic linkages. Mech. Mach. Theory 39(7), 681–693 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  107. Wu, T.L., Chen, J.H., Chang, S.H.: A six-dof prismatic-spherical-spherical parallel compliant nanopositioner. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(12), 2544 (2008)

    Article  Google Scholar 

  108. Xia, L., Xia, Q., Huang, X., Xie, Y.M.: Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review. Arch. Comput. Methods Eng. 1–42 (2016)

    Google Scholar 

  109. Xia, Q., Shi, T.: Topology optimization of compliant mechanism and its support through a level set method. Comput. Methods Appl. Mech. Eng. 305, 359–375 (2016)

    Article  MathSciNet  Google Scholar 

  110. Xie, Y., Steven, G.: Evolutionary structural optimization for dynamic problems. Comput. Structures 58(6), 1067–1073 (1996)

    Article  MATH  Google Scholar 

  111. Xie, Y.M., Steven, G.P.: A simple evolutionary procedure for structural optimization. Comput. Structures 49(5), 885–896 (1993)

    Article  Google Scholar 

  112. Xie, Y.M., Steven, G.P.: Basic evolutionary structural optimization. In: Evolutionary Structural Optimization, pp. 12–29. Springer, London (1997)

    Chapter  MATH  Google Scholar 

  113. Yamada, T., Izui, K., Nishiwaki, S.: A level set-based topology optimization method for maximizing thermal diffusivity in problems including design-dependent effects. J. Mech. Des. 133(3), 031,011 (2011)

    Article  Google Scholar 

  114. Yamada, T., Izui, K., Nishiwaki, S., et al.: A topology optimization method based on the level set method incorporating a fictitious interface energy. Comput. Methods Appl. Mech. Eng. 199(45), 2876–2891 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  115. Yao, Q., Dong, J., Ferreira, P.M.: Design, analysis, fabrication and testing of a parallel-kinematic micropositioning XY stage. Int. J. Mach. Tools Manuf. 47(6), 946–961 (2007)

    Article  Google Scholar 

  116. Yu, Y.Q., Zhu, S.K.: 5R pseudo-rigid-body model for inflection beams in compliant mechanisms. Mech. Mach. Theory 116, 501–512 (2017)

    Article  Google Scholar 

  117. Zhan, J., Zhang, X.: Topology optimization of compliant mechanisms with geometrical nonlinearities using the ground structure approach. Chin. J. Mech. Eng. 24(2), 1 (2011)

    Article  Google Scholar 

  118. Zhang, X., Hu, K., Wang, N.e.a.: Multi-objective topology optimization of multiple materials compliant mechanisms based on parallel strategy. J. Mech. Eng. (in Chinese) 52, 1–8 (2016)

    Article  Google Scholar 

  119. Zhang, X., Ouyang, G., Wang, H.: Topology optimization of multiple inputs and multiple outputs compliant mechanisms. Chin. J. Mech. Eng. 20(1), 82–85 (2007)

    Article  Google Scholar 

  120. Zhang, X., Zheng, Y., Ota, J., Huang, Y.: Peg-in-hole assembly based on two-phase scheme and F/T sensor for dual-arm robot. Sensors 17(9), 2004 (2017)

    Article  Google Scholar 

  121. Zhou, M., Rozvany, G.: Dcoc: an optimality criteria method for large systems part I: theory. Structural Optimization 5(1–2), 12–25 (1992)

    Article  Google Scholar 

  122. Zhou, M., Rozvany, G.: Dcoc: an optimality criteria method for large systems part II: algorithm. Structural Optimization 6(4), 250–262 (1993)

    Article  Google Scholar 

  123. Zhou, M., Rozvany, G.: On the validity of ESO type methods in topology optimization. Structural Multidisciplinary Optimization 21(1), 80–83 (2001)

    Article  Google Scholar 

  124. Zhou, M., Wang, M.Y.: A semi-lagrangian level set method for structural optimization. Structural Multidisciplinary Optimization 46(4), 487–501 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  125. Zhu, B., Zhang, X.: A new level set method for topology optimization of distributed compliant mechanisms. Int. J. Numer. Meth. Eng. 91(8), 843–871 (2012)

    Article  MathSciNet  Google Scholar 

  126. Zhu, B., Zhang, X., Fatikow, S.: Level set-based topology optimization of hinge-free compliant mechanisms using a two-step elastic modeling methodhanisms using a two-step elastic modeling method. ASME J. Mech. Des. 136(2), 031,007 (2014)

    Article  Google Scholar 

  127. Zhu, B., Zhang, X., Fatikow, S.: Filter the shape sensitivity in level set-based topology optimization methods. Structural Multidisciplinary Optimization 51(5), 1035–1049 (2015)

    Article  MathSciNet  Google Scholar 

  128. Zhu, B., Zhang, X., Fatikow, S.: Structural topology and shape optimization using a level set method with distance-suppression scheme. Comput. Methods Appl. Mech. Eng. 283, 1214–1239 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  129. Zhu, B., Zhang, X., Fatikow, S., Wang, N.: Bi-directional evolutionary level set method for topology optimization. Engineering Optimization 47(3), 390–406 (2015)

    Article  MathSciNet  Google Scholar 

  130. Zhu, B., Zhang, X., Wang, N., Fatikow, S.: Optimize heat conduction problem using level set method with a weighting based velocity constructing scheme. Int. J. Heat Mass Transf. 99, 441–451 (2016)

    Article  Google Scholar 

  131. Zhu, S.K., Yu, Y.Q.: Pseudo-rigid-body model for the flexural beam with an inflection point in compliant mechanisms. J. Mech. Robot. (2017)

    Google Scholar 

  132. Zhuang, C., Xiong, Z., Ding, H.: A level set method for topology optimization of heat conduction problem under multiple load cases. Comput. Methods Appl. Mech. Eng. 196(4), 1074–1084 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianmin Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, X., Zhu, B. (2018). Introduction to Compliant Mechanisms and Design Methods. In: Topology Optimization of Compliant Mechanisms. Springer, Singapore. https://doi.org/10.1007/978-981-13-0432-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0432-3_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0431-6

  • Online ISBN: 978-981-13-0432-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics