Skip to main content

Comprehensive Application of the Composite Element Method: Numerical Test of Jointed Rock Masses

  • Chapter
  • First Online:

Part of the book series: Springer Tracts in Civil Engineering ((SPRTRCIENG))

Abstract

With the significant progress in computational geomechanics, multi-scale or multi-level computation termed as the numerical testing (NT) or numerical material (NM), has become more and more acceptable towards the study on the mechanical behaviors of rock-like materials. Nevertheless, it is rather cumbersome that the NT for the properties of rock-like materials demands large computation efforts arise from various sizes of testing specimen and stochastic distributions of aggregate in a concrete mass or discrete fracture network (DFN) in a rock sampling window. Therefore, from practical motivations it is attractive to introduce the CEM with facilitated pre-process into the NT that allows for repeatedly testing on a large number of specimens. In this chapter, the philosophy and roadmap of the NT towards the permeability matrix and elastic compliance matrix as well as their corresponding REV for fractured rocks are elucidated by the hybrid DFN/CEM.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abyaneh SD, Wong HS, Buenfeld NR. Computational investigation of capillary absorption in concrete using a three-dimensional mesoscale approach. Comput Mater Sci. 2014;87:54–64.

    Article  Google Scholar 

  • Andersson J, Dverstorp B. Conditional simulation of fluid flow in three-dimensional networks of discrete fractures. Water Resour Res. 1987;23(10):1876–86.

    Article  Google Scholar 

  • Baecher GB, Lanney NA, Einstein HH. Statistical description of rock properties and sampling. In: Wang FD, Clark GB editors Proc 18th US Symp Rock Mechanics. Colorado (USA): Colorado School of Mines Press, 1977; 5c1–8.

    Google Scholar 

  • Barton CC. Fractal analysis of scaling and spatial clustering of fractures. In: Barton CC, La Pointe PR, editors. Fractals in the earth sciences. New York (USA): Plenum Press; 1995. p. 141–78.

    Chapter  Google Scholar 

  • Barton CC, Larsen E. Fractal geometry of two-dimensional fracture networks at Yucca Mountain, southwestern Nevada. In: Stephansson O, editor. Int symp fund rock joints. Björkliden (Sweden); 1985. 77–84.

    Google Scholar 

  • Cacas MC, Ledoux B, De Marsity G, Tillie B, Barbreau A, Durand E, Feuga B, Peaudecerf P. Modeling fracture flow with a stochastic discrete fracture network: calibration and validation, 1. The Flow Model WATER Resour Res. 1990;26(3):479–89.

    Google Scholar 

  • Charkaluk E, Bigerelle M, Iost A. Fractals and fracture. Eng Fract Mech. 1998;61(1):119–39.

    Article  Google Scholar 

  • Chen SH, He J, Shahrour I. Estimation of elastic compliance matrix for fractured rock masses by composite element method. Int J Rock Mech Min Sci. 2012;49(1):156–64.

    Article  Google Scholar 

  • Chen SH, Feng XM, Shahrour I. Numerical estimation of REV and permeability tensor for fractured rock masses by composite element method. Int J Numer Anal Meth Geomech. 2008;32(12):1459–77.

    Article  Google Scholar 

  • Chiles JP. Fractal and geostatistical methods for modelling a fracture network. Math Geol. 1988;20(6):631–54.

    Article  Google Scholar 

  • Cruden DE. Describing the size of discontinuities. Int J Rock Mech Min Sci & Geomech Abstr. 1977;14(3):133–7.

    Article  Google Scholar 

  • Dershowitz WS, Einstein HH. Three dimensional flow modeling in jointed rock masses. In: Herget G, Vongpaisal S, editors. Proc 6th Int ISRM Congress, vol. 1. Rotterdam (Netherlands): AA Balkema; 1987. p. 87–92.

    Google Scholar 

  • Hakami E, Larsson E. Aperture measurement and flow experiments on a single natural fracture. Int J Rock Mech Min Sci & Geomech Abstr. 1990;33(5):395–404.

    Google Scholar 

  • Hall C, Hoff WD. Water Transport in Brick, Stone and Concrete. London (UK): Spon Press; 2012.

    Google Scholar 

  • Keskin RSO, Hover KC, Grigoriu M. Size effects in modeling diffusivity of hardened mortar. Comput Struct. 2011;89(9):713–23.

    Article  Google Scholar 

  • Hudson JA, Priest SD. Discontinuity frequency in rock masses. Int J Rock Mech Min Sci & Geomech Abstr. 1983;20(2):73–89.

    Article  Google Scholar 

  • Kulatilake PHSW, Panda BB. Effect of block size and joint geometry on jointed rock hydraulics and REV. J Eng Mech, ASCE. 2000;126(8):850–8.

    Article  Google Scholar 

  • Kulatilake PHSW, Wang S, Stephansson O. Effects of finite-size joints on the deformability of jointed rock in three dimensions. Int J Rock Mech Min Sci. 1993a;30(5):479–501.

    Article  Google Scholar 

  • Kulatilake PHSW, Wathugala DN, Stephansson O. Joint network modeling, including a validation to an area in Stripa Mine, Sweden. Int J Rock Mech Min Sci & Geomech Abstr. 1993b;30(5):503–26.

    Article  Google Scholar 

  • Kulatilake PHSW, Wu TH. The density of discontinuity traces in sampling windows. Int J Rock Mech Min Sci & Geomech Abstr. 1984;21(6):354–7.

    Article  Google Scholar 

  • Li XX, Chen SH, Xu Q, Xu Y. Modeling the three-dimensional unsaturated water transport in concrete at the mesoscale. Comput Struct. 2017;190:61–74.

    Article  Google Scholar 

  • Li XX, Xu Y, Chen SH. Computational homogenization of effective permeability in three-phase mesoscale concrete. Constr Build Mater. 2016;121:100–11.

    Article  Google Scholar 

  • Long JCS. Rock fractures and fluid flow. Washington DC (USA): National Academy Press; 1996.

    Google Scholar 

  • Long JCS, Gilmour P, Witherspoon PA. A method for steady fluid flow in random three-dimensional networks of dice-shaped fractures. Water Resour Res. 1985;21(8):35–40.

    Article  Google Scholar 

  • Louis CA. Study of groundwater flow in jointed rock and its influence on the stability of rock masses (Rock Mechanics Research Report 10). London (UK): Imperial College; 1969.

    Google Scholar 

  • Louis C, Maini YN. Determination of in-situ hydraulic parameters in jointed rock. In: Proc 2nd ISRM Congress. Belgrade (Yugoslavia): ISRM; 1970. p. 235–245.

    Google Scholar 

  • Mauldon M. Estimating mean fracture trace length and density from observations in convex windows. Rock Mech Rock Engng. 1998;31(4):201–16.

    Article  Google Scholar 

  • Mauldon M, Dunne WM, Rohrbaugh MB Jr. Circular scanlines and circular windows: new tools for characterizing the geometry of fracture traces. J Struct Geol. 2001;23(2–3):247–58.

    Article  Google Scholar 

  • Mehta PK, Monteiro PJM. Concrete: microstructure, properties, and materials, 3rd ed. New York (USA): McGraw-Hill; 2006.

    Google Scholar 

  • Min KB, Jing LR. Numerical determination of the equivalent elastic compliance tensor for fractured rock masses using the distinct element method. Int J Rock Mech Min Sci. 2003;40(6):795–816.

    Article  MathSciNet  Google Scholar 

  • Min KB, Rutqvist J, Tsang CF, Jing LR. Stress-dependent permeability of fractured rock masses: a numerical study. Int J Rock Mech Min Sci. 2004;41(7):1191–210.

    Google Scholar 

  • Nicholl MJ, Rajaram H, Glass RJ, Detwiler R. Saturated flow in a single fracture: evaluation of reynolds equation in measured aperture fields. Water Resour Res. 1999;35(11):3361–73.

    Article  Google Scholar 

  • Öhman J, Niemi A. Upscaling of fracture hydraulics by means of an oriented correlated stochastic continuum model. Water Resour Res. 2003;39(10):1277–89.

    Article  Google Scholar 

  • Pande GN, Gerrard CM. The behaviour of reinforced jointed rock masses under various simple loading states. In: Proc 5th ISRM Congress. Melbourne (Australia): Brown Prior Anderson Pty Ltd; 1983, F217–F223.

    Google Scholar 

  • Renshaw CE. Connectivity of joint networks with power law length distribution. Water Resour Res. 1999;35(9):2661–70.

    Article  Google Scholar 

  • Roelfstra PE, Sadouki H, Wittmann FH. Le béton numérique. Mater Struct. 1985;18(5):327–35.

    Article  Google Scholar 

  • Schwartz FW, Smith WL, Crowe AS. A stochastic analysis of microscopic dispersion in fractured media. Water Resour Res. 1983;19(5):1253–65.

    Article  Google Scholar 

  • Sitharam TG, Sridevi J, Shimizu N. Practical equivalent continuum characterization of jointed rock masses. Int J Rock Mech Min Sci. 2001;38(3):437–48.

    Article  Google Scholar 

  • Snow D. Anisotropic permeability of fractured media. Water Resour Res. 1969;5(6):1273–89.

    Article  Google Scholar 

  • Tsang YW, Tsang CF. Channel model of flow through fractured media. Water Resour Res. 1987;23(3):467–79.

    Article  Google Scholar 

  • Wei ZQ, Egger P, Descoeuders F. Permeability prediction for jointed rock masses. Int J Rock Mech Min Sci & Geomech Abstr. 1995;32(3):251–61.

    Article  Google Scholar 

  • Wei ZQ, Hudson JA. The influence of joints on rock modulus. In: Tan ZY, editor. Proc int symp eng in complex formations. Beijing (China): Science Press; 1986. p. 54–62.

    Google Scholar 

  • Wittmann FH, Roelfstra PE, Sadouki H. Simulation and analysis of composite structures. Mat Sci Eng. 1985;68(2):239–48.

    Article  Google Scholar 

  • Xu Y, Chen SH. A method for modeling the damage behavior of concrete with a three-phase mesostructure. Constr Build Mater. 2016;102:26–38.

    Article  Google Scholar 

  • Xu Y, Xu Q, Chen SH, Li XX. Self-restraint thermal stress in early-age concrete samples and its evaluation. Constr Build Mater. 2017;134:104–11.

    Article  Google Scholar 

  • Zhang X, Sanderson DJ, Harkness RM, Last NC. Evaluation of the 2D permeability tensor for fractured rock masses. Int J Rock Mech Min Sci & Geomech Abstr. 1996;33(1):17–37.

    Article  Google Scholar 

  • Zienkiewicz OC, Pande GN. Time dependent multi-laminated model of rocks – a numerical study of deformation and failure of jointed rock masses. Int J Numer Anal Meth Geomech. 1976;1(3):219–47.

    Article  Google Scholar 

  • Zimmerman RW, Bodvarsson GS. Hydraulic conductivity of rock fractures. Transp Porous Media. 1996;23(1):1–30.

    Article  Google Scholar 

  • Zhou C, Huang B, Shu X. Micromechanical model for predicting coefficient of thermal expansion of concrete. J Mater Civ Eng. 2013;25(9):1171–80.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-hong Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, Sh. (2019). Comprehensive Application of the Composite Element Method: Numerical Test of Jointed Rock Masses. In: Computational Geomechanics and Hydraulic Structures. Springer Tracts in Civil Engineering . Springer, Singapore. https://doi.org/10.1007/978-981-10-8135-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8135-4_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8134-7

  • Online ISBN: 978-981-10-8135-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics