Skip to main content

Methodologies for the Bioenrichment of Plankton

  • Chapter
  • First Online:
Basic and Applied Zooplankton Biology

Abstract

Aquaculture is expanding worldwide to meet the protein requirements of humans. The basic requirement in culture practice is seed production, while the major constraint is larval nutrition (Imelda 2003). Larviculture—specifically, the initiation of feeding in early larval stages—is a major bottleneck for the industrial scale-up of fish and shellfish cultures. Larval survival also varies with the type of organism, with a rate of <10% in finfish, <1% in mud crabs, <20–40% in shrimp and <20% in molluscs. Evolutionarily, most fish and crustacean larvae are motile prey organisms and encounter problems with the initiation of inert/dry diets. Even if they accept the diets, their poor enzymatic activity and non-functional stomachs will not allow them to digest the existing formulated diets (Pedersen et al. 1987; Pedersen and Hjelmeland 1988; Agh and Sorgeloos 2005). Thus, improving the acceptance of dry diets for fish larvae and formulating more digestible and less polluting diets are important tasks for aquaculturists. The challenge in larval nutrition lies in the fact that live feeds are not completely replaced in hatchery operations. Therefore, once this is achieved, live food (phytoplankton and zooplankton) will remain an important food source for the starting of feeding in the early larval stages. Among the important starter feeds used in larviculture are newly hatched nauplii of Artemia and rotifer Brachionus plicatilis. The successful development of commercial hatcheries and farms has been made possible by several improvements in the production techniques of this live food (Candreva et al. 1996; Dehasque et al. 1998; Agh and Sorgeloos 2005). When compared to rotifers and Artemia nauplii, the traditional live feeds provided to marine fish larvae, copepods can improve larval growth and survival and the ratio of normally pigmented juveniles when fed either alone or as a supplement (Kraul 1983; McEvoy et al. 1998; Nanton and Castell 1999). Thus, the ability to culture these organisms at a scale adequate for marine larviculture would present a major step forward for the production of many marine species that require a better suited diet nutritionally than that provided by the traditional live prey (Josianna and Stottup 2006). It is believed that the optimal formulations for the first feeding of larvae should simulate the yolk composition and, to some extent, reflect the nutrient requirements and metabolic capacities of pre-feeding finfish and shellfish of other organisms (Imelda 2003).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agh, N., and P. Sorgeloos. 2005. Handbook of Protocols and Guidelines for Culture and Enrichment of Live Food for Use in Larviculture, 1–60. Urmia: Artemia & Aquatic Animals Research Center, Urmia University.

    Google Scholar 

  • Bell, M.V., R. Batty, J.C. Navarro, J.R. Sargent, and J.R. Dick. 1995. Dietary deficiency of docosahexaenoic acid impairs vision at low light intensities in juvenile herring (Clupea harengus L.). Lipids 30: 443–449.

    Article  CAS  Google Scholar 

  • Candreva, P., P. Dhert, A. Novelli, and D. Brissi. 1996. Potential gains through alimentation nutrition improvements in the hatchery. In Seabass and Seabream Culture: Problems and Prospects. European Aquaculture Society, ed. B. Chatain, M. Sargalia, J. Sweetman, and P. Lavens, vol. 388, 148–159. An international workshop, 16–18 October 1996, Verona, Italy.

    Google Scholar 

  • Chen, L. 1997. Application of multivariate analysis in nutritional evaluation of Artemia. Marine Science Bulletin 16: 66–75.

    Google Scholar 

  • Coutteau, P., I. Geurden, M.R. Camara, P. Bergot, and P. Sorgeloos. 1997. Review on the dietary effects of phospholipids in fish and crustacean larviculture. Aquaculture 155: 149–164.

    Article  CAS  Google Scholar 

  • Dehasque, M., T. DeWolf, P. Candreva, P. Coutteau, and P. Sorgeloos. 1998. Control of bacterial input through the live food in marine fish hatcheries. In Aquaculture and Water: Fish Culture, Shellfish Culture and Water Usage, ed. H. Grizel and P. Kestemont, 66–67. Abstracts of contributions presented at the International Conference Aquaculture Europe’ 98, Bordeaux, France, October 7–10, 1998. European Aquaculture Society, Oostende.

    Google Scholar 

  • Dhert, P., P. Lavens, M. Duray, and P. Sorgeloos. 1990. Improved larval survival at metamorphosis of Asian seabass Lates calcarifer using-3 HUFA-enriched live food. Aquaculture 128: 315–333.

    Google Scholar 

  • Dhert, P., P. Sorgeloos, and B. Devresse. 1993. Contributions towards a specific DHA enrichment in the live food Brachionus plicatilis and Artemia sp. In Fish Farming Technology, ed. H. Reinertsen, L.A. Dahle, L. Jorgensen, and K. Tvinnereim, 109–115. Rotterdam: Balkema.

    Google Scholar 

  • Dhert, P., P. Divanach, M. Kentouri, and P. Sorgeloos. 1998. Rearing techniques for difficult marine fish larvae. World Aquaculture March: 48–55.

    Google Scholar 

  • Estevez, A., L.A. McEvoy, J.G. Bell, and J.R. Sargent. 1999. Growth, survival, lipid composition and pigmentation of turbot (Scophthalmus maximus) larvae fed live-prey enriched in Arachidonic and Eicosapentaenoic acids. Aquaculture 180: 321–343.

    Article  CAS  Google Scholar 

  • Foscarini, R. 1988. Intensive farming procedure for red sea bream (Pagrus major) in Japan. Aquaculture 72: 191–246.

    Article  Google Scholar 

  • Hamada, K., A. Hagiwara, and K. Hirayama. 1993. Use of preserved diet for rotifer Brachionus plicatilis resting egg formation. Nippon Suisan Gakkaishi 59: 85–91.

    Article  Google Scholar 

  • Han, K., I. Guerden, and P. Sorgeloss. 2000. Enrichment strategies for Artemia using emulsions providing different levels of n-3 HUFA. Aquaculture 183: 335–347.

    Article  Google Scholar 

  • Imelda, J. 2003. Bioencapsulation of Live Feeds. Technical Paper-19, Course manual, ICAR-CMFRI, Kochi, India, 1–6.

    Google Scholar 

  • Josianna G Stottup. 2006. A Review on the status and progress in rearing copepods for marine Larviculture. Advantages and Disadvantages. Among Calanoid, Harpacticoid and Cyclopoid copepods. (Eds.) Suarez, L.E.C., R.D. Marie, M.T. Salazar, M. G. N. Lopez, D. A. V. Cavazos, A. C. P. Cruz A.G. Ortega, Avances en Nutricion acuicola VIII. VIII Simposium International de Nutricion Acuicola. Universidad Autonoma de Nuevo Leon, Monterrey., ISBN. 970-694-333-5.

    Google Scholar 

  • Kanazawa, A. 1993. Nutritional mechanisms involved in the occurrence of abnormal pigmentation in hatchery-reared flatfish. Journal of the World Aquaculture Society 24: 162–166.

    Article  Google Scholar 

  • Kraul, S. 1983. Results and hypotheses for the propagation of the grey mullet, Mugil cephalus L. Aquaculture 30: 273–284.

    Article  Google Scholar 

  • Leger, P., D.A. Bengtson, K.L. Simpson, and P. Sorgeloos. 1986. The use and nutritional value of Artemia as a food source. Oceanography and Marine Biology Annual Review 24: 521–623.

    Google Scholar 

  • Leger, Ph., E. Naessens-Foucquaert, and P. Sorgeloos. 1987. International study on Artemia XXXV. Techniques to manipulate the fatty acid profile in Artemia nauplii and the effect on its nutritional effectiveness for the marine crustacean Mysidopsis bahia M. In Artemia Research and Its Applications, Vol. 3. Ecology, Culturing, Use in Aquaculture, ed. P. Sorgeloos, D.A. Bengtson, W. Decleir, and E. Jaspers, 411–424. Wetteren: Universa Press.

    Google Scholar 

  • Lovell, T. 1990. Variation in quality of Artemia for feeding larval fish. Aquaculture Magazine 16: 77–78.

    Google Scholar 

  • Lubzens, E., A. Marko, and A. Tietz. 1985. De novo synthesis of fatty acids in the rotifer Brachionus plicatilis. Aquaculture 47: 27–37.

    Article  CAS  Google Scholar 

  • Lubzens, E., O. Gibson, O. Zmora, and A. Sukenik. 1995. Potential advantages of frozen algae (Nannochloropsis sp.) for rotifer (Brachionus plicatilis) culture. Aquaculture 133: 295–309.

    Article  Google Scholar 

  • McEvoy, L.A., J.C. Navarro, J.G. Bell, and J.R. Sargent. 1995. Autoxidation of oil emulsions during the Artemia enrichment process. Aquaculture 134: 101–112.

    Article  CAS  Google Scholar 

  • McEvoy, L.A., J.C. Navarro, F. Hontario, F. Amat, and J.R. Sargent. 1996. Two novel Artemia enrichment diets containing polar lipid. Aquaculture 144: 339–352.

    Article  CAS  Google Scholar 

  • McEvoy, L., T. Naess, J.G. Bell, and O. Lie. 1998. Lipid and fatty acid composition of normal and malpigmented Atlantic halibut (Hippoglossus hippoglossus) fed enriched Artemia: a comparison with fry fed wild copepods. Aquaculture 163: 235–248.

    Article  Google Scholar 

  • Merchie, G., P. Lavens, and P. Sorgeloos. 1997. Optimization of dietary vitamin C in fish and crustacean larvae: a review. Aquaculture 155: 165–181.

    Article  CAS  Google Scholar 

  • Miki, N., T. Taniguchi, H. Hamakawa, Y. Yamada, and N. Sakurai. 1990. Reduction of albinism in hatchery-reared flounder “hirame”, Paralichthys olivaceus by feeding on rotifer enriched with vitamin A. Sui San-Zoshosku 38: 147–155.

    CAS  Google Scholar 

  • Mourente, G., A. Rodriguez, D.R. Tocher, and J.R. Sargent. 1993. Effects of dietary docosahexaenoic acid (DHA; 22:6n-3) on lipid and fatty acid compositions and growth in gilthead sea bream (Sparus aurata L.) larvae during first feeding. Aquaculture 112: 79–98.

    Article  CAS  Google Scholar 

  • Nanton, D.A., and J.D. Castell. 1999. The effects of temperature and dietary fatty acid on the fatty acid composition of harpacticoid copepods, for use as a live food for marine fish larvae. Aquaculture 175: 167–181.

    Article  CAS  Google Scholar 

  • Olivotto, I., A. Rollo, R. Sulpizio, M. Avella, L. Tosti, and O. Carnevali. 2006. Breeding and rearing the Sunrise Dottyback Pseudochromis flavivertex: The importance of live prey enrichment during larval development. Aquaculture 255: 480–487.

    Article  Google Scholar 

  • Ozkizilick, S., and F.E. Chu. 1994. Uptake and metabolism of liposomes by Artemia nauplii. Aquaculture 128: 131–141.

    Article  Google Scholar 

  • Pedersen, B.H., and K. Hjelmeland. 1988. Fate of typsin and assimilation efficiency in larval herring (Clupea harengus) following digestion of copepods. Marine Biology 97: 467–476.

    Article  CAS  Google Scholar 

  • Pedersen, B.H., E.M. Nilssen, and K. Hjelmeland. 1987. Variations in the content of trypsin and trypsinogen in larval herring (Clupea harengus) digesting copepod nauplii. Marine Biology 94: 171–181.

    Article  CAS  Google Scholar 

  • Reitan, K.I., J.R. Rainuzzo, and Y. Olsen. 1994. Influence of lipid composition of live feed on growth, survival and pigmentation of turbot larvae. Aquaculture International 2: 33–48.

    Article  Google Scholar 

  • Sargent, J.R., J.G. Bell, M.V. Bell, R.J. Henderson, and D.R. Tocher. 1995. Requirement criteria for essential fatty acids. Journal of Applied Ichthyology 11: 183–198.

    Article  CAS  Google Scholar 

  • Sargent, J.R., J.G. Bell, L.A. McEvoy, D.R. Tocher, and A. Estevez. 1999. Recent developments in the essential fatty acid nutrition of fish. Aquaculture 177: 191–199.

    Article  CAS  Google Scholar 

  • Seixas, P., A. Otero, L.M.P. Valente, J. Dias, and M. Rey-Mendez. 2010. Growth and fatty acid composition of Octopus vulgaris paralarvae fed with enriched Artemia or co-fed with an inert diet. Aquaculture International 18: 1121–1135.

    Article  CAS  Google Scholar 

  • Southgate, P.C., and D.C. Lou. 1995. Improving the n-3 HUFA composition of Artemia using microcapsules containing marine oil. Aquaculture 134: 91–99.

    Article  CAS  Google Scholar 

  • Stottrup, J.G., and Y. Attramadal. 1992. The influence of different rotifer and Artemia enrichment diets on growth, survival and pigmentation in turbot (Scophthalmus maximus L.) larvae. Journal of the World Aquaculture Society 23: 307–316.

    Article  Google Scholar 

  • Sukenik, A., O. Zmora, and Y. Carmeli. 1993. Biochemical quality of marine unicellular algae with special emphasis on lipid composition. II. Nannochloropsis sp. Journal of Aquaculture 117: 313–326.

    Article  CAS  Google Scholar 

  • Tocher, D.R., and J.R. Sargent. 1987. The effect of calcium ionophore A23187 on the metabolism of arachidonic and eicosapentaenoic acid in neutrophils from a marine teleost fish rich in (n-3) polyunsaturated fatty acids. Comparative Biochemistry and Physiology 67: 733–739.

    Google Scholar 

  • Van Stappen, G. 1996. Introduction, biology and ecology of artemia. In Manual on the Production and Use of Live Food for Aquaculture, FAO Fisheries technical paper 361, ed. P. Lavens and P. Sorgeloos, 79–163. Rome: FAO.

    Google Scholar 

  • Watanabe, T. 1979. Nutritional Quality of Living Feeds Used in Seed Production of Fish. Proceedings of the 7th Japan-Soviet Joint Symposium on Aquaculture, Sept 1978, Tokyo, 49–66.

    Google Scholar 

  • Watanabe, T., and V. Kiron. 1994. Prospects in larval fish dietetics. Aquaculture 124: 235–251.

    Article  Google Scholar 

  • Watanabe, T., F. Oowa, C. Kitajima, and S. Fujita. 1980. Relationship between dietary value of brine shrimp Artemia salina and their content of v3 highly unsaturated fatty acids. Nippon Suisan Gakkaishi 46: 35–41.

    Article  CAS  Google Scholar 

  • Yamasaki, T., T. Aki, Y. Mori, and T. Yamamoto. 2007. Nutritional enrichment of larval fish feed with thraustochytrid producing polyunsaturated fatty acids and xanthophylls. Journal of Bioscience and Bioengineering 104: 200–206.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the authorities of Bharathidasan University, Tiruchirappalli-24, Tamil Nadu, India, for providing the necessary facilities. The first author (NM) gratefully acknowledges the SERB, Department of Science and Technology (DST), Govt. of India, New Delhi, for financial support through PI/National Post-Doctoral Fellowship (N-PDF) (DST-SERB, file no.: PDF/2016/000738; dated 05.06.2016).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manickam, N. et al. (2019). Methodologies for the Bioenrichment of Plankton. In: Santhanam, P., Begum, A., Pachiappan, P. (eds) Basic and Applied Zooplankton Biology. Springer, Singapore. https://doi.org/10.1007/978-981-10-7953-5_14

Download citation

Publish with us

Policies and ethics