Skip to main content

Introduction

  • Chapter
  • First Online:
  • 1172 Accesses

Abstract

The sandwich assays are one of the mainstays in the fields of clinical diagnostics, molecular detection, and environmental monitoring due to their high specificity and good sensitivity for the detection of analytes. Owing to the development of chemistry and material science, the sandwich assays have been developed vigorously with thousands of published papers to date. To further improve the sensitivity, supersandwich assays emerge as the times require. In this chapter, we will introduce the sandwich assays and briefly discuss the applications of the sandwich assays in the detection of proteins, nucleic acids, small molecules, ions, and cells as well as supersandwich assays. The discussion in detail can be found in subsequent chapters.

The original version of this chapter was revised: Foreword has been included and authors’ affiliations have been updated. The erratum to this chapter is available at https://doi.org/10.1007/978-981-10-7835-4_13

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhao LX, Sun L, Chu XG (2009) Chemiluminescence immunoassay. TrAC-trends. Anal Chem 28:404–415

    CAS  Google Scholar 

  2. Fu XL, Chen LX, Choo J (2017) Optical nanoprobes for ultrasensitive immunoassay. Anal Chem 89:124–137

    Article  CAS  Google Scholar 

  3. Pei XM, Zhang B, Tang J, Liu BQ, Lai WQ, Tang DP (2013) Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: a review. Anal Chim Acta 758:1–18

    Article  CAS  Google Scholar 

  4. Shen JW, Li YB, Gu HS, Xia F, Zuo XL (2014) Recent development of sandwich assay based on the nanobiotechnologies for proteins, nucleic acids, small molecules, and ions. Chem Rev 114:7631–7677

    Article  CAS  Google Scholar 

  5. Liu R, Zhang SX, Wei C, Xing Z, Zhang SC, Zhang XR (2016) Metal stable isotope tagging: renaissance of radioimmunoassay for multiplex and absolute quantification of biomolecules. Acc Chem Res 49:775–783

    Article  CAS  Google Scholar 

  6. Yin YM, Cao Y, Xu YY, Li GX (2010) Colorimetric immunoassay for detection of tumor markers. Int J Mol Sci 11:5078–5095

    Article  Google Scholar 

  7. Smith DS, Eremin SA (2008) Fluorescence polarization immunoassays and related methods for simple, high-throughput screening of small molecules. Anal Bioanal Chem 391:1499–1507

    Article  CAS  Google Scholar 

  8. Fojta M, Danhel A, Havran L, Vyskocil V (2016) Recent progress in electrochemical sensors and assays for DNA damage and repair. TrAC-trends Anal Chem 79:160–167

    Article  CAS  Google Scholar 

  9. Wang SX, Li G (2008) Advances in giant magnetoresistance biosensors with magnetic nanoparticle tags: review and outlook. IEEE Trans Magn 44:1687–1702

    Article  Google Scholar 

  10. Unser S, Bruzas I, He J, Sagle L (2015) Localized surface plasmon resonance biosensing: current challenges and approaches. Sensors 15:15684–15716

    Article  Google Scholar 

  11. Teste B, Descroix S (2012) Colloidal nanomaterial-based immunoassay. Nanomedicine 7:917–929

    Article  CAS  Google Scholar 

  12. Liu NN, Huang FJ, Lou XD, Xia F (2017) DNA hybridization chain reaction and DNA supersandwich self-assembly for ultrasensitive detection. Sci China-Chem 60:311–318

    Article  CAS  Google Scholar 

  13. Rusling JF, Kumar CV, Gutkind JS, Patel V (2010) Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer. Analyst 135:2496–2511

    Article  CAS  Google Scholar 

  14. Zhang Y, Guo YM, Xianyu YL, Chen WW, Zhao YY, Jiang XY (2013) Nanomaterials for ultrasensitive protein detection. Adv Mater 25:3802–3819

    Article  CAS  Google Scholar 

  15. Chikkaveeraiah BV, Bhirde AA, Morgan NY, Eden HS, Chen XY (2012) Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano 6:6546–6561

    Article  CAS  Google Scholar 

  16. Chen CH, Luo M, Ye T, Li NX, Ji XH, He ZK (2015) Sensitive colorimetric detection of protein by gold nanoparticles and rolling circle amplification. Analyst 140:4515–4520

    Article  CAS  Google Scholar 

  17. Wang B, Yu C (2010) Fluorescence turn-on detection of a protein through the reduced aggregation of a perylene probe. Angew Chem Int Ed 49:1485–1488

    Article  CAS  Google Scholar 

  18. Lai GS, Yan F, Ju HX (2009) Dual signal amplification of glucose oxidase-functionalized nanocomposites as a trace label for ultrasensitive simultaneous multiplexed electrochemical detection of tumor markers. Anal Chem 81:9730–9736

    Article  CAS  Google Scholar 

  19. Zhu DB, Hou XM, Xing D (2012) Ultrasensitive aptamer-based bio bar code immunomagnetic separation and electrochemiluminescence method for the detection of protein. Anal Chim Acta 725:39–43

    Article  CAS  Google Scholar 

  20. Wang T, Yang Z, Lei C, Lei J, Zhou Y (2014) An integrated giant magnetoimpedance biosensor for detection of biomarker. Biosens Bioelectron 58:338–344

    Article  CAS  Google Scholar 

  21. Wu B, Jiang R, Wang Q, Huang J, Yang XH, Wang KM, Li WS, Chen ND, Li Q (2016) Detection of C-reactive protein using nanoparticle-enhanced surface plasmon resonance using an aptamer-antibody sandwich assay. Chem Commun 52:3568–3571

    Article  CAS  Google Scholar 

  22. Ren KW, Wu J, Yan F, Zhang Y, Ju HX (2015) Immunoreaction-triggered DNA assembly for one-step sensitive ratiometric electrochemical biosensing of protein biomarker. Biosens Bioelectron 66:345–349

    Article  CAS  Google Scholar 

  23. Dahm R (2008) Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. Hum Genet 122:565–581

    Article  CAS  Google Scholar 

  24. Nakano S, Miyoshi D, Sugimoto N (2014) Effects of molecular crowding on the structures, interactions, and functions of nucleic acids. Chem Rev 114:2733–2758

    Article  CAS  Google Scholar 

  25. Wachowius F, Attwater J, Holliger P (2017) Nucleic acids: function and potential for abiogenesis. Q Rev Biophys 50:1–37

    Article  Google Scholar 

  26. Gerasimova YV, Kolpashchikov DM (2014) Enzyme-assisted target recycling (EATR) for nucleic acid detection. Chem Soc Rev 43:6405–6438

    Article  CAS  Google Scholar 

  27. Safavieh M, Kanakasabapathy MK, Tarlan F, Ahmed MU, Zourob M, Asghar W, Shafiee H (2016) Emerging loop-mediated isothermal amplification-based microchip and microdevice technologies for nucleic acid detection. ACS Biomater Sci Eng 2:278–294

    Article  CAS  Google Scholar 

  28. Veigas B, Fortunato E, Baptista PV (2015) Field effect sensors for nucleic acid detection: recent advances and future perspectives. Sensors 15:10380–10398

    Article  CAS  Google Scholar 

  29. Smith SJ, Nemr CR, Kelley SO (2017) Chemistry-driven approaches for ultrasensitive nucleic acid detection. J Am Chem Soc 139:1020–1028

    Article  CAS  Google Scholar 

  30. Rodiger S, Liebsch C, Schmidt C, Lehmann W, Resch-Genger U, Schedler U, Schierack P (2014) Nucleic acid detection based on the use of microbeads: a review. Microchim Acta 181:1151–1168

    Article  Google Scholar 

  31. Ying YL, Zhang JJ, Gao R, Long YT (2013) Nanopore-based sequencing and detection of nucleic acids. Angew Chem Int Ed 52:13154–13161

    Article  CAS  Google Scholar 

  32. Hartman MR, Ruiz RCH, Hamada S, Xu CY, Yancey KG, Yu Y, Han W, Luo D (2013) Point-of-care nucleic acid detection using nanotechnology. Nanoscale 5:10141–10154

    Article  CAS  Google Scholar 

  33. Guo J, Ju JY, Turro NJ (2012) Fluorescent hybridization probes for nucleic acid detection. Anal Bioanal Chem 402:3115–3125

    Article  CAS  Google Scholar 

  34. Gao XF, Xu H, Baloda M, Gurung AS, Xu LP, Wang T, Zhang XJ, Liu GD (2014) Visual detection of microRNA with lateral flow nucleic acid biosensor. Biosens Bioelectron 54:578–584

    Article  CAS  Google Scholar 

  35. Shankaran DR, Gobi KVA, Miura N (2007) Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sens Actuator B-Chem 121:158–177

    Article  CAS  Google Scholar 

  36. Huang JH, Su XF, Li ZG (2017) Metal ion detection using functional nucleic acids and nanomaterials. Biosens Bioelectron 96:127–139

    Article  CAS  Google Scholar 

  37. Liu DB, Wang Z, Jiang XY (2011) Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules. Nanoscale 3:1421–1433

    Article  CAS  Google Scholar 

  38. Alvarez-Puebla RA, Liz-Marzan LM (2012) SERS detection of small inorganic molecules and ions. Angew Chem Int Ed 51:11214–11223

    Article  CAS  Google Scholar 

  39. Zhao WW, Xu JJ, Chen HY (2016) Photoelectrochemical detection of metal ions. Analyst 141:4262–4271

    Article  CAS  Google Scholar 

  40. Zhao T, Liu R, Ding XF, Zhao JC, Yu HX, Wang L, Xu Q, Wang X, Lou XH, He M, Xiao Y (2015) Nanoprobe-enhanced, split aptamer-based electrochemical sandwich assay for ultrasensitive detection of small molecules. Anal Chem 87:7712–7719

    Article  CAS  Google Scholar 

  41. Chen J, Li J, Sun Y (2012) Microfluidic approaches for cancer cell detection, characterization, and separation. Lab Chip 12:1753–1767

    Article  CAS  Google Scholar 

  42. Arya SK, Lim B, Rahman ARA (2013) Enrichment, detection and clinical significance of circulating tumor cells. Lab Chip 13:1995–2027

    Article  CAS  Google Scholar 

  43. Castro CM, Ghazani AA, Chung J, Shao HL, Issadore D, Yoon TJ, Weissleder R, Lee H (2014) Miniaturized nuclear magnetic resonance platform for detection and profiling of circulating tumor cells. Lab Chip 14:14–23

    Article  CAS  Google Scholar 

  44. Yu L, Ng SR, Xu Y, Dong H, Wang YJ, Li CM (2013) Advances of lab-on-a-chip in isolation, detection and post-processing of circulating tumour cells. Lab Chip 13:3163–3182

    Article  CAS  Google Scholar 

  45. Alix-Panabieres C, Pantel K (2014) Technologies for detection of circulating tumor cells: facts and vision. Lab Chip 14:57–62

    Article  CAS  Google Scholar 

  46. Lin M, Chen JF, Lu YT, Zhang Y, Song JZ, Hou S, Ke ZF, Tseng HR (2014) Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells. Acc Chem Res 47:2941–2950

    Article  CAS  Google Scholar 

  47. Wu MS, Liu Z, Xu JJ, Chen HY (2016) Highly specific electrochemiluminescence detection of cancer cells with a closed bipolar electrode. ChemElectroChem 3:429–435

    Article  CAS  Google Scholar 

  48. Xia F, White RJ, Zuo XL, Patterson A, Xiao Y, Kang D, Gong X, Plaxco KW, Heeger AJ (2010) An electrochemical supersandwich assay for sensitive and selective DNA detection in complex matrices. J Am Chem Soc 132:14346–14348

    Article  CAS  Google Scholar 

  49. Liu NN, Jiang YN, Zhou YH, Xia F, Guo W, Jiang L (2013) Two-way nanopore sensing of sequence-specific oligonucleotides and small-molecule targets in complex matrices using integrated DNA supersandwich structures. Angew Chem Int Ed 52:2007–2011

    Article  CAS  Google Scholar 

  50. Wei BM, Liu NN, Zhang JT, Ou XW, Duan RX, Yang ZK, Lou XD, Xia F (2015) Regulation of DNA self-assembly and DNA hybridization by chiral molecules with corresponding biosensor applications. Anal Chem 87:2058–2062

    Article  CAS  Google Scholar 

  51. Wei BM, Zhang JT, Wang HB, Xia F (2016) A new electrochemical aptasensor based on a dual-signaling strategy and supersandwich assay. Analyst 141:4313–4318

    Article  CAS  Google Scholar 

  52. Wei BM, Zhang TC, Ou XW, Li XC, Lou XD, Xia F (2016) Stereochemistry-guided DNA probe for single nucleotide polymorphisms analysis. ACS Appl Mater Interfaces 8:15911–15916

    Article  CAS  Google Scholar 

  53. Jiang YN, Liu NN, Guo W, Xia F, Jiang L (2012) Highly-efficient gating of solid-state nanochannels by DNA supersandwich structure containing ATP aptamers: a nanofluidic IMPLICATION logic device. J Am Chem Soc 134:15395–15401

    Article  CAS  Google Scholar 

  54. Liu NN, Hou RZ, Gao PC, Lou XD, Xia F (2016) Sensitive Zn2+ sensor based on biofunctionalized nanopores via combination of DNAzyme and DNA supersandwich structures. Analyst 141:3626–3629

    Article  CAS  Google Scholar 

  55. Khanna P, Walt DR (2015) Salivary diagnostics using a portable point-of-service platform: a review. Clin Ther 37:498–504

    Article  Google Scholar 

  56. Fenton EM, Mascarenas MR, Lopez GP, Sibbett SS (2009) Multiplex lateral-flow test strips fabricated by two-dimensional shaping. ACS Appl Mater Interfaces 1:124–129

    Article  CAS  Google Scholar 

  57. Roder M, Vieths S, Holzhauser T (2009) Commercial lateral flow devices for rapid detection of peanut (Arachis hypogaea) and hazelnut (Corylus avellana) cross-contamination in the industrial production of cookies. Anal Bioanal Chem 395:103–109

    Article  Google Scholar 

  58. Bamrungsap S, Apiwat C, Chantima W, Dharakul T, Wiriyachaiporn N (2014) Rapid and sensitive lateral flow immunoassay for influenza antigen using fluorescently-doped silica nanoparticles. Microchim Acta 181:223–230

    Article  CAS  Google Scholar 

  59. Barbosa AI, Gehlot P, Sidapra K, Edwards AD, Reis NM (2015) Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device. Biosens Bioelectron 70:5–14

    Article  CAS  Google Scholar 

  60. Chen M, Yang H, Rong LY, Chen XQ (2016) A gas-diffusion microfluidic paper-based analytical device (mu PAD) coupled with portable surface-enhanced Raman scattering (SERS): facile determination of sulphite in wines. Analyst 141:5511–5519

    Article  CAS  Google Scholar 

  61. Liu D, Li XR, Zhou JK, Liu SB, Tian T, Song YL, Zhu Z, Zhou LJ, Ji TH, Yang CY (2017) A fully integrated distance readout ELISA-Chip for point-of-care testing with sample-in-answer-out capability. Biosens Bioelectron 96:332–338

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, X., Xia, F. (2018). Introduction. In: Xia, F., Zhang, X., Lou, X., Yuan, Q. (eds) Biosensors Based on Sandwich Assays. Springer, Singapore. https://doi.org/10.1007/978-981-10-7835-4_1

Download citation

Publish with us

Policies and ethics