Skip to main content

Height Finding Technique of Metric Wave Radar

  • Chapter
  • First Online:
Advanced Metric Wave Radar
  • 781 Accesses

Abstract

The main difficulties in low-elevation height finding of VHF radar are as follows:

  1. (1)

    VHF radar is characterized by long wavelength, wide beam, low angle resolution and high accuracy of measurement.

  2. (2)

    Pitch beam is easy to illuminate the ground, so the received beams include not only the direct wave signals reflected from the targets, but multipath signals reflected from the ground (the sea surface) because it tracks targets in low elevation, which results in lobe splitting. It causes the detection and measurement errors increase.

  3. (3)

    When detecting low elevation targets, multipath reflections and strongly correlated direct waves enter the receiving beam mainlobe simultaneously.

  4. (4)

    The included angle between the direct wave and multipath echoes is very small and is usually within one beamwidth, so the conventional angle measurement method by amplitude comparison becomes invalid.

  5. (5)

    Reflections of undulating surfaces and irregular reflectors (such as vegetation and buildings) will result in complicated multipath reflections, such as diffuse reflections and scattering, which are difficult to model and will have a strong impact on the height-finding performance of metric wave radar.

  6. (6)

    Height-finding technique of metric wave radar is not only suitable for complanate site, but also for a variety of other environments, such as rough terrain, mountain environment and some complex sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Barton D K. Low-Angle Radar Tracking [J]. Proceedings of the IEEE, 1974, 62(6):587–704.

    Google Scholar 

  2. White W D. Low-Angle Radar Tracking in the Presence of Multipath [J]. IEEE Trans on Aerospace and Electronic Systems, 1974, 10(6):835–852.

    Article  Google Scholar 

  3. Giuli D, Tiberio R. A Modified Monopulse Technique for Radar Tracking with Low-Angle Multipath [J]. IEEE Trans on Aerospace and Electronic Systems, 1975, 11(5):741–748.

    Article  Google Scholar 

  4. Mrstik A V, Smith P G. Multipath Limitations on Low-Angle Radar Tracking [J]. IEEE Trans on Aerospace and Electronic Systems, 1978, 14(1):85–102.

    Article  Google Scholar 

  5. Reilly J, Litva J, Bauman P. New Angle-of-Arrival Estimator: Comparative Evaluation Applied to the Low-Angle Tracking Problem [J]. IEE Proceedings F, Communications, Radar and Signal Processing, 1988, 135(5):408–420.

    Google Scholar 

  6. Sword C K, Simaan M, Kamen E W. Multiple Target Angle Tracking Using Sensor Array Outputs [J]. IEEE Trans on Aerospace and Electronic Systems, 1990, 26(2):367–373.

    Article  Google Scholar 

  7. Bruder J A, Saffold J A. Multipath Effects on Low-Angle Tracking at Millimeter-Wave Frequencies [J]. IEEE Proceedings F, 1991, 138(2):172–184.

    Google Scholar 

  8. Zoltowski M D, Lee T-S. Maximum Likelihood Based Sensor Array Signal Processing in the Beamspace Domain for Low Angle Radar Tracking [J]. IEEE Trans on Signal Processing, 1991, 39(3):656–671.

    Article  Google Scholar 

  9. Rahamim D, Tabrikian J, Shavit R. Source Localization Using Vector Sensor Array in a Multipath Environment [J]. IEEE Trans on Signal Processing, 2004, 52(11):3096–3103.

    Google Scholar 

  10. Hurtado M, Nehorai A. Performance Analysis of Passive Low-Grazing-Angle Source Localization in Maritime Environments Using Vector Sensors [J]. IEEE Trans on Aerospace and Electronic Systems, 2007, 43(2):780–789.

    Google Scholar 

  11. LI Jinliang, LI Yongzhen, WANG Xuesong. Study on Anti-Stealth with Meter-Band Polarimetric Radar [J]. Radar Science and Technology, 2005, 3(6):321–326.

    Google Scholar 

  12. Wan Shanhu, Din Jianjiang. Key Technology for Improving Four Countermeasures of Meter-Wave Radar [J]. China Radar, 1998(2):1–4.

    Google Scholar 

  13. Dong Zhiwen, Qu Xiaoguang. Anti-stealth Performance Analysis for Guidance Radar in Air Defense System [C]//Tenth Annual National Radar Conference, 2008:376–379.

    Google Scholar 

  14. Tao Fuyu. Introduction of Modern Meter-wave Radar [J]. Ground Air Defense Weapon, 2002(4):34–38.

    Google Scholar 

  15. CHEN Changxing, GONG Linyu, BAN Fei. Research into Anti-Stealth Technology of Meter-wave Resonance Radar [J]. Shipboard Electronic Countermeasures, 2009, 32(4):34–37.

    Google Scholar 

  16. CHEN Zhiming. Stealth Waveform for Airborn Radar [J]. Modern Radar, 2006, 28(9):24–26.

    Google Scholar 

  17. Wang Pai, Xia Mingyao, Zhou Lezhu. Scattering Characteristics Comparison Analysis of Stealth Aircraft with Different Methods [J]. 2004(19):69–72.

    Google Scholar 

  18. Shi Xiaoling. Analysis on Target Track of Meter-wave Radar [J]. Modern Electron, 2000, 73(4):8–12.

    Google Scholar 

  19. Sheng Jingtai. Multipath Height Finding Method Used in Meter-Wave RADAR [J]. Journal of China Academy of Electronics and Information Technology, 2008, 3(5):510–514.

    Google Scholar 

  20. Hu Kunjiao, Wu Jianqi. Low-Elevation Height-Finding Experiment Research for Meter-Wave Radar [C]// Tenth Annual National Radar Conference, 2008:63–66.

    Google Scholar 

  21. Hu Xiaoqin, Chen Jianwen, Chen Hu. Artificial Neural Network Diction for Height-Finding of Meter-Wave Radar [J]. Transaction of Air Force Radar Academy, 2004, 18(3):16–19.

    Google Scholar 

  22. Dong Mei, Zhang Shouhong, Wu Xiangdong. Range High-Resolution Height-finding Technology[J]. Fire-Control Radar Technology, 2006, 35(1):10–14.

    Google Scholar 

  23. Capon J. High-Resolution Frequency-Wavenumber Spectrum Analysis [J]. IEEE Proceedings, 1969, 57(8):1408–1418.

    Article  Google Scholar 

  24. Schmidt R O. Multiple Emitter Location and Signal Parameter Estimation [J]. IEEE Trans on Antennas and Propagation, 1986, 34(3):276–280.

    Article  Google Scholar 

  25. Pillai S U, Kwon B H. Forward/Backward Spatial Smoothing Techniques for Coherent Signal Identification [J]. IEEE Trans on Acoustic, Speech and Signal Processing, 1989, 37(1):8–15.

    Article  Google Scholar 

  26. Rao B D, Hari K V S. Performance Analysis of Root-MUSIC [J]. IEEE Trans on Acoustic, Speech and Signal Processing, 1989, 37(12): 1939–1949.

    Google Scholar 

  27. Roy R, Kailath T. ESPRIT-a Subspace Rotation Approach to Estimation of Parameters of Cissoids in Noise [J]. IEEE Trans on Acoustic, Speech and Signal Processing, 1986, 34(10):1340–1342.

    Google Scholar 

  28. Haardt M, Nossek J A. Unitary ESPRIT: How to Obtain Increased Estimation Accuracy with a Reduced Computational Burden [J]. IEEE Trans on Signal Processing, 1995, 43(5):1332–1242.

    Google Scholar 

  29. Stoica P, Sharman K. C. Maximum Likelihood Methods for Direction-of-Arrival Estimation [J]. IEEE Trans on Acoustic, Speech and Signal Processing, 1990, 38(7):1132–1143.

    Google Scholar 

  30. Ziskind I., Wax M. Maximum Likelihood Localization of Multiple Sources by Alternating Projection [J]. IEEE Trans on Acoustic, Speech and Signal Processing, 1988, 36(10):1553–1559.

    Article  Google Scholar 

  31. Zhao Yiongbo, Zhang Shouhong. Height-Finding Technology Research on Meter-Wave Radar [D]. Electronics Engineering Institute of Xidian University, 2003.

    Google Scholar 

  32. Li Ping, Russian Air defense System Began to Deploy Meter-Wave Anti-Stealth Digital Phased Array Radar. Aerospace Electronic Warfare, 2004(4):42.

    Google Scholar 

  33. Bao Zheng Zhang Qingwen. A New Style Metric Wave Radar-Synthetic Impulse and Aperture Radar. Modern Radar, 1995, 17(1):1–13.

    Google Scholar 

  34. Zhang Qinwen. System Performance Analysis and Research on Synthetic Impulse and Aperture Radar [D]. Xian: Doctor’s Degree Thesis of Xidian University, 1994.

    Google Scholar 

  35. Chen Baixiao. SIAR and its Four-Dimensional Tracking Processing Technology Research [D]. Xian: Doctor’s Degree Thesis of Xidian University, 1997.

    Google Scholar 

  36. Chen Baixiao, Zhang Shouhong, Wu Jianqi, et al. Analysis and Results on Sparse-Array Synthetic Impulse and Aperture Radar [C]//Proc. of 2006 CIE International Conf. on Radar, Beijing: IEEE, 2001:76–80.

    Google Scholar 

  37. Wu Jianqi, He Ruilong, Jiang Kai. Research and Experimentation on Sparse-Array Synthetic Impulse and Aperture Radar [J]. Modern Electron, 1998, 64(3):1–5.

    Google Scholar 

  38. Yang Kehu, Bao Zheng. Performance Improvements of Multi-Frequency Application on Low-Angle Tracking Direction Estimation [J]. Journal of Xidian University, 1993, 20(4):181–193.

    Google Scholar 

  39. Zhang Ping, Zhang Xiaohua. One New Method for Low-Elevation Tracking [J]. Modern Radar, 2001, 12(6):9–12.

    Google Scholar 

  40. HE Zishu, LI Min, JING Yulan. Target Multipath DOA Estimation Algorithm Based on Frequency Agility for Phased Array Radar [J]. Systems Engineering and Electronics, 2005, 27(11):1880–1882.

    Google Scholar 

  41. Sherman S M. Complex Indicated Angles Applied to Unresolved Radar Targets and Multipath [J]. IEEE Trans on AES, 1971(1):160–170.

    Article  Google Scholar 

  42. Peyton P Z, Goldman L. Radar Performance with Multipath Using the Complex Angle [J]. IEEE Trans on AES, 1971, 7(1):171–178.

    Google Scholar 

  43. Howard D D, Sherman S M, Campbell J J. Experimental Results of the Complex Indicated Angle Technique for Multipath Correction [J]. IEEE Trans on AES, 1974, 10(6):779–787.

    Google Scholar 

  44. Knepp D L. Variance and Bias of Angle Estimation Radars [J]. IEEE Trans on Antennas and Propagation, 1976, 24(4):518–521.

    Article  Google Scholar 

  45. Zheng Y B, Tseng S M, Yu K B. Closed-Form Four-Channel Monopulse Two-Target Resolution [J]. IEEE Trans on AES, 2003, 39(3):1083–1089.

    Google Scholar 

  46. Nickel U, Fhr F. Overview of Generalized Monopulse Estimation [J]. IEEE A&E Systems Magazine, 2006, 21(6):27–56.

    Google Scholar 

  47. FAN Zhijie, SHANG She. A New Method for Low Altitude Target Detection and Tracking [J]. Radar Science and Technology, 2004, 2(3):153–157.

    Google Scholar 

  48. Jia Yongkang, Bao Zheng. Maximum Likelihood DOA Estimation by Using Doppler Information [J]. Acta Electronica Sinica, 1997, 25(6):71–76.

    Google Scholar 

  49. Jia Yongkang, Bao Zheng. Wave Arrive Direction Estimation Method and Performance Analysis Under the Model of Time-Space Two-Dimensional Signal [J]. Acta Electronica Sinica, 1997, 25(6):69–73.

    Google Scholar 

  50. Zhao Guanghui, Chen Baixiao, Dong Mei. A New DOA Estimator Based on Alternating Projection and Its Application in VHF Radar [J]. Journal of Electronics & Information Technology, 2008, 30(1):224–227.

    Google Scholar 

  51. Hu Tiejun, Yang Xueya, Chen Baixiao. Application of Beamspace ML Algorithm Based on Array Interpolation in Height Measuring Using VHF Radar [J]. Journal of Electronics & Information Technology, 2009, 24(4):660–666.

    Google Scholar 

  52. Wu Xiangdong, Zhang Shouhong, Dong Mei. An Algorithm Based on Linear Preprocessing for Meter-Wave Radars to a Target at Low Altitude [J]. Acta Electronica Sinica, 2006, 34(9):1668–1671.

    Google Scholar 

  53. Zhang Wenjun, Zhao Yongbo, Zhang Shouhong. Altitude Measurement of Meter-Wave Radar Using the General MUSIC Algorithm and Its Improvement [J]. Journal of Electronics & Information Technology, 2007, 29(2):387–390.

    Google Scholar 

  54. Liu Jun, Liu Zheng, Liu Yunfo. Elevation Angle and Multipath Fading Coefficient Joint Estimation Algorithm in VHF Radar [J]. Journal of Electronics & Information Technology, 2011, 33(1):33–37.

    Google Scholar 

  55. Chen Baixiao, Hu Tiejun, Zheng Ziliang. Method of Altitude Measurement Based on Beam Split in VHF Radar and Its Application [J]. Acta Electronica Sinica, 2007, 35(6):1021–1025.

    Google Scholar 

  56. Chen Baixiao, Zhao Guanghui, Zhang Shouhong. Altitude Measurement Based on Beam Split and Frequency Diversity in VHF Radar [J]. IEEE Trans on Aerospace and Electronic Systems, 2010, 46(1):3–13.

    Google Scholar 

  57. Lo T, Litva J. Low-Angle Tracking Using a Multifrequency Sampled Aperture Radar [J]. IEEE Trans on AES, 1991, 27(5):797–805.

    Article  Google Scholar 

  58. Lo T, Litva J. Use of a Highly Deterministic Multipath Signal Model in Low-Angle Tracking [J]. IEE Proceedings-F, 1991, 138(2):163–171.

    Article  Google Scholar 

  59. Lo T, Wong T, Litva J. New Technique for Low-Angle Radar Tracking [J]. Electronics Letters, 1991, 27(6):529–531.

    Article  Google Scholar 

  60. Zhu Wei. Study on Low-Angle Altitude Measurement in VHF Radar [D]. Xian: Xidian University, 2013.

    Google Scholar 

  61. Hu Xiaoqin. Basis Study on the Application of Super-Resolution Spatial Spectrum Estimation Technique [D]. Changsha: National University of Defense Technology, 2009.

    Google Scholar 

  62. Xu Liang. The Study of Target Echo Extraction in Active Sonar Signal Processing Based on Blind Source Separation and Array Extension [D]. Harbin: Harbin Engineering University, 2010.

    Google Scholar 

  63. Jin Rong. Spatial Spectrum Estimation Calibration Algorithm in Microwave Radiation Receiving System [D]. Wuhan: HuaZhong University of Science and Technology, 2008.

    Google Scholar 

  64. Yang Lingling. The Research on the Algorithm for Spatial Spectrum Estimation [D]. Wuhan: HuaZhong University of Science and Technology, 2007.

    Google Scholar 

  65. Fu Na. Research on Communication and Direction-finding System of Multi-Beam Modulation Carrying Directional Information [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008.

    Google Scholar 

  66. Zhang Yufeng. DOA Algorithms Research [D]. Wuhan: HuaZhong University of Science and Technology, 2008.

    Google Scholar 

  67. Lei Yuan. Research of MUSIC Algorithm and Implementation on DSP [D]. Qingdao: Ocean University of China, 2009.

    Google Scholar 

  68. Yang Xueya. Study on Array Super-Resolution and Altitude Measurement in VHF Radar [D]. Xian: Xidian University, 2011.

    Google Scholar 

  69. Wan Xin. Study on Application of Computational Intelligence Methods to the DOA Estimation [D]. Harbin: Harbin Engineering University, 2008.

    Google Scholar 

  70. Chai Xuyang. Method and Implementation of Height-Finding Processing in VHF Radar [D]. Xian: Xidian University, 2011.

    Google Scholar 

  71. YANG Xueya, YANG Guangyu. Method of Height Measuring Based on Sparse Solution in Meter-Wave Radar [J]. Radar Science and Technology, 2012, 10(6):629–632, 638.

    Google Scholar 

  72. SONG Xiufen, ZHU Wei, XIE Tengfei, et al. Study on Low-Angle Height-Finding Algorithm of VHF Radar in Complex Terrain [J]. Radar Science and Technology, 2014, 12(2):156–160.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqi Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 National Defense Industry Press, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, J. (2020). Height Finding Technique of Metric Wave Radar. In: Advanced Metric Wave Radar. Springer, Singapore. https://doi.org/10.1007/978-981-10-7647-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7647-3_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7646-6

  • Online ISBN: 978-981-10-7647-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics