Skip to main content

Fabrication and Investigation of Low-Temperature MS–SOFCs

  • Chapter
  • First Online:
Study on Fabrication and Performance of Metal-Supported Solid Oxide Fuel Cells

Part of the book series: Springer Theses ((Springer Theses))

  • 578 Accesses

Abstract

In order to enhance the performances of low–temperature MS–SOFCs (<600 °C), polarization resistances and long–term stabilities of the infiltrated La0.8Sr0.2CoO3-δ (LSC)–scandia stabilized zirconia (SSZ), La0.58Sr0.4Co0.2Fe0.8O3-δ (LSCF)–SSZ and SmBa0.5Sr0.5Co2.0O5+δ (SBSC)–SSZ cathodes were investigated. MS–SOFCs with SBSC–SSZ cathodes have been fabricated and the electrochemical performance, long–term stability and thermal shock resistance have been evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suzuki T, Hasan Z, Funahashi Y, Yamaguchi T, Fujishiro Y, Awano M (2009) Impact of anode microstructure on solid oxide fuel cells. Science 325:852–855

    Article  Google Scholar 

  2. Lee JG, Park JH, Shul YG (2014) Tailoring gadolinium-doped ceria-based solid oxide fuel cells to achieve 2 W cm−2 at 550 °C. Nat Commun 5:4045

    Google Scholar 

  3. Han F, Mücke R, Van Gestel T, Leonide A, Menzler NH, Buchkremer HP et al (2012) Novel high-performance solid oxide fuel cells with bulk ionic conductance dominated thin-film electrolytes. J Power Sources 218:157–162

    Article  Google Scholar 

  4. Shao ZP, Haile SM (2004) A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431:170–173

    Article  Google Scholar 

  5. Wachsman ED, Lee KT (2011) Lowering the temperature of solid oxide fuel cells. Science 334:935–939

    Article  Google Scholar 

  6. Zhan Z, Bierschenk DM, Cronin JS, Barnett SA (2011) A reduced temperature solid oxide fuel cell with nanostructured anodes. Energy Environ Sci 4:3951–3954

    Article  Google Scholar 

  7. Zhan Z, Han D, Wu T, Ye X, Wang S, Wen T et al (2012) A solid oxide cell yielding high power density below 600 °C. RSC Adv 2:4075–4078

    Article  Google Scholar 

  8. Ullmann H, Trofimenko N, Tietz F, Stöver D, Ahmad-Khanlou A (2000) Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes. Solid State Ionics 138:79–90

    Article  Google Scholar 

  9. Kim JD, Kim GD, Moon JW, Park YI, Lee WH, Kobayashi K et al (2001) Characterization of LSM-YSZ composite electrode by ac impedance spectroscopy. Solid State Ionics 143:379–389

    Article  Google Scholar 

  10. Sholklapper TZ, Kurokawa H, Jacobson C, Visco S, De Jonghe L (2007) Nanostructured solid oxide fuel cell electrodes. Nano Lett 7:2136–2141

    Article  Google Scholar 

  11. Fukunaga H, Koyama M, Takahashi N, Wen C, Yamada K (2000) Reaction model of dense Sm0.5Sr0.5CoO3 as SOFC cathode. Solid State Ionics 132:279–285

    Article  Google Scholar 

  12. Tucker MC, Lau GY, Jacobson CP, DeJonghe LC, Visco SJ (2008) Stability and robustness of metal-supported SOFCs. J Power Sources 175:447–451

    Article  Google Scholar 

  13. Han D, Liu Y, Wang S, Zhan Z (2014) Enhanced performance of solid oxide fuel cell fabricated by a replica technique combined with infiltrating process. Int J Hydrogen Energy 39:13217–13223

    Article  Google Scholar 

  14. Liu Y, Chen K, Zhao L, Chi B, Pu J, Jiang SP et al (2014) Performance stability and degradation mechanism of La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes under solid oxide fuel cells operation conditions. Int J Hydrogen Energy 39:15868–15876

    Article  Google Scholar 

  15. Xu Q, Huang D-p, Zhang F, Chen W, Chen M, Liu H-x (2008) Structure, electrical conducting and thermal expansion properties of La0.6Sr0.4Co0.8Fe0.2O3−δ–Ce0.8Sm0.2O2−δ composite cathodes. J Alloys Compd. 454:460–465

    Google Scholar 

  16. Nie L, Liu M, Zhang Y, Liu M (2010) La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes infiltrated with samarium-doped cerium oxide for solid oxide fuel cells. J Power Sources 195:4704–4708

    Article  Google Scholar 

  17. Liu Y, Wang F, Chi B, Pu J, Jian L, Jiang SP (2013) A stability study of impregnated LSCF–GDC composite cathodes of solid oxide fuel cells. J Alloy Compd 578:37–43

    Article  Google Scholar 

  18. Zhao E, Jia Z, Liu X, Gao K, Huo H, Xiong Y (2014) Stability of nanorod-structured La0.8Sr0.2Co0.2Fe0.8O3−δ–Gd0.2Ce0.8O1.9 composite cathodes for intermediate temperature solid oxide fuel cells. Ceram Int 40:14891–14898

    Article  Google Scholar 

  19. Shah M, Voorhees PW, Barnett SA (2011) Time-dependent performance changes in LSCF-infiltrated SOFC cathodes: the role of nano-particle coarsening. Solid State Ionics 187:64–67

    Article  Google Scholar 

  20. Han D, Wu H, Li J, Wang S, Zhan Z (2014) Nanostructuring of SmBa0.5Sr0.5Co2O5+δ cathodes for reduced-temperature solid oxide fuel cells. J Power Sources 246:409–416

    Article  Google Scholar 

  21. Meng X, Han D, Wu H, Li J, Zhan Z (2014) Characterization of SrFe0.75Mo0.25O3−δ–La0.9Sr0.1Ga0.8Mg0.2O3−δ composite cathodes prepared by infiltration. J Power Sources 246:906–911

    Article  Google Scholar 

  22. Kim JH, Cassidy M, Irvine JT, Bae J (2009) Advanced electrochemical properties of LnBa0. 5Sr0. 5Co2O5+δ (Ln = Pr, Sm, and Gd) as cathode materials for IT-SOFC. J Electrochem Soc 156:B682–B689

    Article  Google Scholar 

  23. Ding X, Kong X, Wu H, Zhu Y, Tang J, Thong Y (2012) SmBa0.5Sr0.5Cu2O5+δ and SmBa0.5Sr0.5CuFeO5+δ layered perovskite oxides as cathodes for IT-SOFCs. Int J Hydrogen Energy 37:2546–2551

    Article  Google Scholar 

  24. Li J, Wang S, Liu R, Wang Z, Qian JQ (2008) Electrochemical performance of (Bi2O3)(1–x)(Er2O3)(x)-Ag composite material for intermediate temperature solid oxide fuel cell cathode. Solid State Ionics 179:1597–1601

    Article  Google Scholar 

  25. Vohs JM, Gorte RJ (2009) High-Performance SOFC Cathodes Prepared by Infiltration. Adv Mater 21:943–956

    Article  Google Scholar 

  26. Zhou Y, Han D, Yuan C, Liu M, Chen T, Wang S et al (2014) Infiltrated SmBa0.5Sr0.5Co2O5+δ cathodes for metal-supported solid oxide fuel cells. Electrochim Acta 149:231–236

    Article  Google Scholar 

  27. Zhan W, Zhou Y, Chen T, Miao G, Ye X, Li J et al (2015) Long-term stability of infiltrated La0.8Sr0.2CoO3−δ, La0.58Sr0.4Co0.2Fe0.8O3−δ and SmBa0.5Sr0.5Co2.0O5+δ cathodes for low temperature solid oxide fuel cells. Int J Hydrogen Energy 40:16532–16539

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yucun Zhou .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Zhou, Y. (2018). Fabrication and Investigation of Low-Temperature MS–SOFCs. In: Study on Fabrication and Performance of Metal-Supported Solid Oxide Fuel Cells. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-6617-7_3

Download citation

Publish with us

Policies and ethics