Skip to main content

Premier Biocontrol Traits of Pseudomonads: Siderophores, Phenazines or What Else?

  • Chapter
  • First Online:
Microorganisms for Green Revolution

Abstract

Green revolution increased agricultural yields, but indiscriminate use of agrochemicals stagnated productivity and developed resistance among the pests. This provoked to search for effective biocontrol agents as a substitute to chemical pesticides. Among many biocontrol agents, ubiquitous pseudomonads can suppress plant diseases by inhibiting phytopathogens and promote plant growth. Pseudomonads possess a variety of traits that make them an appropriate biocontrol agent. The antimicrobial substances like hydrogen cyanide, 2,4-diacetylphloroglucinol, phenazines, pyoluteorin, pyrrolnitrin, cyclic lipopeptides, etc. produced from pseudomonads are known to suppress fungal pathogens. Moreover, siderophores from pseudomonads also indirectly suppress fungal pathogens by making iron unavailable for their growth due to its chelation. The biosurfactants and hydrolytic enzymes from pseudomonads also support biocontrol mechanisms. Looking towards the overall importance of pseudomonads, the role of their metabolites in disease suppression is discussed here along with the effect of environmental factors and safety aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdel-Mawgoud AM, Aboulwafa MM, Hassouna NA (2009) Characterization of rhamnolipid produced by Pseudomonas aeruginosa isolate Bs20. Appl Biochem Biotechnol 157(2):329–345

    Article  PubMed  CAS  Google Scholar 

  • Ahmadzadeh M, Tehrani AS (2009) Evaluation of fluorescent pseudomonads for plant growth promotion, antifungal activity against Rhizoctonia solani on common bean, and biocontrol potential. Biol Control 48(2):101–107

    Article  Google Scholar 

  • Ali NI, Siddiqui IA, Shaukat SS, Zaki MJ (2002) Nematicidal activity of some strains of Pseudomonas spp. Soil Biol Biochem 34(8):1051–1058

    Article  CAS  Google Scholar 

  • Aliye N, Fininsa C, Hiskias Y (2008) Evaluation of rhizosphere bacterial antagonists for their potential to bioprotect potato (Solanum tuberosum) against bacterial wilt (Ralstonia solanacearum). Biol Control 47(3):282–288

    Article  Google Scholar 

  • Alström S, Burns RG (1989) Cyanide production by rhizobacteria as a possible mechanism of plant growth inhibition. Biol Fertil Soils 7(3):232–238

    Article  Google Scholar 

  • Arora NK, Khare E, JH O, Kang SC, Maheshwari DK (2008) Diverse mechanisms adopted by fluorescent Pseudomonas PGC2 during the inhibition of Rhizoctonia solani and Phytophthora capsici. World J Microbiol Biotechnol 24(4):581–585

    Article  Google Scholar 

  • Arseneault T, Filion M (2016) Phenazine-producing Pseudomonas spp. as biocontrol agents of plant pathogens. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, vol 2. Springer, New Delhi, pp 53–68

    Chapter  Google Scholar 

  • Asadhi S, Bhaskara Reddy BV, Sivaprasad Y, Prathyusha M, Murali Krishna T, Vijay Krishna Kumar K, Raja Reddy K (2013) Characterisation, genetic diversity and antagonistic potential of 2, 4-diacetylphloroglucinol producing Pseudomonas fluorescens isolates in groundnut-based cropping systems of Andhra Pradesh, India. Arch Phytopathol Plant Protect 46(16):1966–1977

    Article  CAS  Google Scholar 

  • Ayyadurai N, Naik PR, Sakthivel N (2007) Functional characterization of antagonistic fluorescent pseudomonads associated with rhizospheric soil of rice (Oryza sativa L.) J Microbiol Biotechnol 17(6):919–927

    CAS  PubMed  Google Scholar 

  • Bakker AW, Schippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp-mediated plant growth-stimulation. Soil Biol Biochem 19(4):451–457

    Article  CAS  Google Scholar 

  • Bakker PA, Pieterse CM, Van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97(2):239–243

    Article  PubMed  Google Scholar 

  • Bano N, Musarrat J (2004) Characterization of a novel carbofuran degrading Pseudomonas sp. with collateral biocontrol and plant growth promoting potential. FEMS Microbiol Lett 231(1):13–17

    Article  CAS  PubMed  Google Scholar 

  • Barea JM, Andrade G, Bianciotto V, Dowling D, Lohrke S, Bonfante P, O’gara F, Azcon-Aguilar C (1998) Impact on arbuscular mycorrhiza formation of Pseudomonas strains used as inoculants for biocontrol of soil-borne fungal plant pathogens. Appl Environ Microbiol 64(6):2304–2307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baron SS, Terranova G, Rowe JJ (1989) Molecular mechanism of the antimicrobial action of pyocyanin. Curr Microbiol 18(4):223–230

    Article  CAS  Google Scholar 

  • Bender CL, Rangaswamy V, Loper J (1999) Polyketide production by plant-associated Pseudomonads 1. Annu Rev Phytopathol 37(1):175–196

    Article  CAS  PubMed  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LM (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35(4):1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bensidhoum L, Nabti E, Tabli N, Kupferschmied P, Weiss A, Rothballer M, Schmid M, Keel C, Hartmann A (2016) Heavy metal tolerant Pseudomonas protegens isolates from agricultural well water in northeastern Algeria with plant growth promoting, insecticidal and antifungal activities. Eur J Soil Biol 75:38–46

    Article  CAS  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486

    Article  CAS  PubMed  Google Scholar 

  • Bergstrom S, Theorell H, Davide H (1946) Pyolipic acid, a metabolic product of pseudomonas-pyocyanea, active against mycobacterium-tuberculosis. Arch Biochem 10(1):165–166

    CAS  Google Scholar 

  • Bossis E, Lemanceau P, Latour X, Gardan L (2000) The taxonomy of Pseudomonas fluorescens and Pseudomonas putida: current status and need for revision. Agronomie 20(1):51–63

    Article  Google Scholar 

  • Braud A, Hannauer M, Mislin GL, Schalk IJ (2009) The Pseudomonas aeruginosa pyochelin-iron uptake pathway and its metal specificity. J Bacteriol 191(11):3517–3525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brazelton JN, Pfeufer EE, Sweat TA, Gardener BB, Coenen C (2008) 2, 4-Diacetylphloroglucinol alters plant root development. Mol Plant Microbe Interact 21(10):1349–1358

    Article  CAS  PubMed  Google Scholar 

  • Briard B, Bomme P, Lechner BE, Mislin GL, Lair V, Prévost MC, Latgé JP, Haas H, Beauvais A (2015) Pseudomonas aeruginosa manipulates redox and iron homeostasis of its microbiota partner Aspergillus fumigatus via phenazines. Sci Rep 5:8220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Budzikiewicz H (1993) Secondary metabolites from fluorescent pseudomonads. FEMS Microbiol Lett 104(3–4):209–228

    Article  CAS  Google Scholar 

  • Buysens S, Heungens K, Poppe J, Hofte M (1996) Involvement of pyochelin and pyoverdine in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol 62:865–871

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cameotra SS, Makkar RS (2010) Biosurfactant-enhanced bioremediation of hydrophobic pollutants. Pure Appl Chem 82(1):97–116

    Article  CAS  Google Scholar 

  • Carroll H, Moenne-Loccoz Y, Dowling DN, O’gara F (1995) Mutational disruption of the biosynthesis genes coding for the antifungal metabolite 2, 4-diacetylphloroglucinol does not influence the ecological fitness of Pseudomonas fluorescens F113 in the rhizosphere of sugarbeets. Appl Environ Microbiol 61(8):3002–3007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cartwright DK, Chilton WS, Benson DM (1995) Pyrrolnitrin and phenazine production by Pseudomonas cepacia, strain 5.5 B, a biocontrol agent of Rhizoctonia solani. Appl Microbiol Biotechnol 43(2):211–216

    Article  CAS  Google Scholar 

  • Chernin L, Chet I (2002) Microbial enzymes in the biocontrol of plant pathogens and pests. In Enzymes in the environment: activity, ecology, and applications. CRC Press

    Google Scholar 

  • Chin-A-Woeng TF, Bloemberg GV, van der Bij AJ, van der Drift KM, Schripsema J, Kroon B, Scheffer RJ, Keel C, Bakker PA, Tichy HV, de Bruijn FJ (1998) Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant Microbe Interact 11(11):1069–1077

    Article  CAS  Google Scholar 

  • Chincholkar SB, Chaudhari BL, Talegaonkar SK, Kothari RM (2000) Microbial iron chelators: a sustainable tool for the biocontrol of plant diseases. In: Upadhyay RK, Mukerji KG, Chamol BP (eds) Biocontrol potential and its exploitation in sustainable agriculture crop disease, weeds, nematodes. Springer, Boston, pp 49–70

    Chapter  Google Scholar 

  • Chincholkar SB, Chaudhari BL, Rane MR, Sarode PO (2006) Fungal phytopathogen suppression using Siderophoregenic bioinoculants. In Biological control of plant diseases, p 401

    Google Scholar 

  • Chincholkar SB, Chaudhari BL, Sarode PO, Rane MR (2009) Phenazines of Pseudomonas: tool for biological control of soilborne phytopathogens. In: Agriculturally important microorganisms, vol 1. Academic World International, Bhopal, pp 101–115

    Google Scholar 

  • Cigna J, des Essarts YR, Mondy S, Hélias V, Beury-Cirou A, Faure D (2015) Draft genome sequences of Pseudomonas fluorescens strains PA4C2 and PA3G8 and Pseudomonas putida PA14H7, three biocontrol bacteria against Dickeya phytopathogens. Genome Announc 3(1):e01503–e01514

    Article  PubMed  PubMed Central  Google Scholar 

  • Cobessi D, Celia H, Pattus F (2005) Crystal structure at high resolution of ferric-pyochelin and its membrane receptor FptA from Pseudomonas aeruginosa. J Mol Biol 352(4):893–904

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook RJ (1993) Making greater use of introduced microorganisms for biological control of plant pathogens. Annu Rev Phytopathol 31(1):53–80

    Article  CAS  PubMed  Google Scholar 

  • Cordero P, Cavigliasso A, Príncipe A, Godino A, Jofré E, Mori G, Fischer S (2012) Genetic diversity and antifungal activity of native Pseudomonas isolated from maize plants grown in a central region of Argentina. Syst Appl Microbiol 35(5):342–351

    Article  PubMed  Google Scholar 

  • Couillerot O, Prigent-Combaret C, Caballero-Mellado J, Moënne-Loccoz Y (2009) Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Lett Appl Microbiol 48(5):505–512

    Article  CAS  PubMed  Google Scholar 

  • Cox CD, Adams PA (1985) Siderophore activity of pyoverdin for Pseudomonas aeruginosa. Infect Immun 48(1):130–138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cox CD, Rinehart KL, Moore ML, Cook JC (1981) Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Proc Natl Acad Sci 78(7):4256–4260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crichton RR, Charloteaux-Wauters M (1987) Iron transport and storage. Eur J Biochem 164(3):485–506

    Article  CAS  PubMed  Google Scholar 

  • Cronin D, Moenne-Loccoz Y, Fenton A, Dunne C, Dowling DN, O’gara F (1997) Role of 2, 4-diacetylphloroglucinol in the interactions of the biocontrol pseudomonad strain F113 with the potato cyst nematode Globodera rostochiensis. Appl Environ Microbiol 63(4):1357–1361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Czaja K, Góralczyk K, Struciński P, Hernik A, Korcz W, Minorczyk M, Łyczewska M, Ludwicki JK (2015) Biopesticides–towards increased consumer safety in the European Union. Pest Manag Sci 71(1):3–6

    Article  CAS  PubMed  Google Scholar 

  • D’aes J, Hua GK, De Maeyer K, Pannecoucque J, Forrez I, Ongena M, Dietrich LE, Thomashow LS, Mavrodi DV, Höfte M (2011) Biological control of Rhizoctonia root rot on bean by phenazine-and cyclic lipopeptide-producing Pseudomonas CMR12a. Phytopathology 101(8):996–1004

    Article  PubMed  CAS  Google Scholar 

  • Dandurishvili N, Toklikishvili N, Ovadis M, Eliashvili P, Giorgobiani N, Keshelava R, Chernin L (2011) Broad-range antagonistic rhizobacteria Pseudomonas fluorescens and Serratia plymuthica suppress Agrobacterium crown gall tumours on tomato plants. J Appl Microbiol 110(1):341–352

    Article  CAS  PubMed  Google Scholar 

  • De Bruijn I, Raaijmakers JM (2009) Diversity and functional analysis of LuxR-type transcriptional regulators of cyclic lipopeptide biosynthesis in Pseudomonas fluorescens. Appl Environ Microbiol 75(14):4753–4761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De La Fuente L, Landa BB, Weller DM (2006) Host crop affects rhizosphere colonization and competitiveness of 2, 4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 96(7):751–762

    Article  CAS  Google Scholar 

  • de Souza JT, Arnould C, Deulvot C, Lemanceau P, Gianinazzi-Pearson V, Raaijmakers JM (2003) Effect of 2, 4-diacetylphloroglucinol on Pythium: cellular responses and variation in sensitivity among propagules and species. Phytopathology 93(8):966–975

    Article  PubMed  Google Scholar 

  • de Weger LA, van der Bij AJ, Dekkers LC, Simons M, Wijffelman CA, Lugtenberg BJ (1995) Colonization of the rhizosphere of crop plants by plant-beneficial pseudomonads. FEMS Microbiol Ecol 17(4):221–227

    Article  Google Scholar 

  • Debode J, Maeyer KD, Perneel M, Pannecoucque J, Backer GD, Höfte M (2007) Biosurfactants are involved in the biological control of Verticillium microsclerotia by Pseudomonas spp. J Appl Microbiol 103(4):1184–1196

    Article  CAS  PubMed  Google Scholar 

  • Défago G, Keel C, Moënne-Loccoz Y (1997) Fate of released Pseudomonas bacteria in the soil profile: implications for the use of genetically modified microbial inoculants. In: Heaven F (ed) Ecotoxicology: responses, biomarkers and risk assessment. SOS Publications, Fair Haven, pp 403–418

    Google Scholar 

  • Devi KK, Seth N, Kothamasi S, Kothamasi D (2007) Hydrogen cyanide-producing rhizobacteria kill subterranean termite Odontotermes obesus (rambur) by cyanide poisoning under in vitro conditions. Curr Microbiol 54(1):74–78

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, Svatoš A, Dabrowska P, Schmidt A, Boland W, Kothe E (2008a) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74(1):19–25

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa C, Svatoš A, Merten D, Büchel G, Kothe E (2008b) Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 54(3):163–172

    Article  CAS  PubMed  Google Scholar 

  • dos Santos Lopes V, Fischer J, Pinheiro TM, Cabral BV, Cardoso VL, Coutinho Filho U (2017) Biosurfactant and ethanol co-production using Pseudomonas aeruginosa and Saccharomyces cerevisiae co-cultures and exploded sugarcane bagasse. Renew Energy 109:305–310

    Article  CAS  Google Scholar 

  • Dowling DN, O’Gara F (1994) Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends Biotechnol 12(4):133–141

    Article  CAS  Google Scholar 

  • Driscoll JA, Brody SL, Kollef MH (2007) The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs 67(3):351–368

    Article  CAS  PubMed  Google Scholar 

  • Duffy BK, Défago G (1997) Zinc improves biocontrol of Fusarium crown and root rot of tomato by Pseudomonas fluorescensand represses the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis. Phytopathology 87(12):1250–1257

    Article  CAS  PubMed  Google Scholar 

  • Duffy BK, Défago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65(6):2429–2438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duijff BJ, Meijer JW, Bakker PA, Schippers B (1993) Siderophore-mediated competition for iron and induced resistance in the suppression of Fusarium wilt of carnation by fluorescent Pseudomonas spp. Eur J Plant Pathol 99(5):277–289

    CAS  Google Scholar 

  • Dunne C, Delany I, Fenton A, Lohrke S, Moe¨nne-Loccoz Y, O’Gara F (1996) The biotechnology and application of Pseudomonas inoculants for the biocontrol of phytopathogens, In: Stacey G, Mullin B, Gresshoff PM (eds) Biology of plant-microbe interactions. IS-MPMI/St. Paul, Minn pp 441–448

    Google Scholar 

  • Dwivedi D, Johri BN (2003) Antifungals from fluorescent pseudomonads: biosynthesis and regulation. Curr Sci 85(12):1693–1703

    CAS  Google Scholar 

  • Edwards SG, Young JPW, Fitter AH (1998) Interactions between Pseudomonas fluorescens biocontrol agents and Glomus mosseae, an arbuscular mycorrhizal fungus, within the rhizosphere. FEMS Microbiol Lett 166:297–303

    Article  CAS  Google Scholar 

  • EFSA (European Food Safety Authority) 2017 Conclusion on the peer review of the pesticide risk assessment of the active substance Pseudomonas chlororaphis strain MA 342. 15(1):4668–21 doi:https://doi.org/10.2903/j.efsa.2017.4668

  • Elad Y, Baker R (1985) The role of competition for iron and carbon in suppression of chlamydospore germination of Fusarium spp.by Pseudomonas spp. Phytopathology 75(9):1053–1059

    Article  CAS  Google Scholar 

  • Elander RP, MabeJA HRH, Gorman M (1968) Metabolism of tryptophans by Pseudomonas aureofaciens. VI. Production of pyrrolnitrin by selected Pseudomonas species. Appl Microbiol 16:753–758

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elshikh M, Marchant R, Banat IM (2016) Biosurfactants: promising bioactive molecules for oral-related health applications. FEMS Microbiol Lett 363(18):213

    Article  Google Scholar 

  • Faccone D, Pasteran F, Albornoz E, Gonzalez L, Veli O, Prieto M, Bucciarelli R, Callejo R, Corso A (2014) Human infections due to Pseudomonas chlororaphis and Pseudomonas oleovorans harboring new bla (VIM-2)-borne integrons. Infect Genet Evol 28:276

    Article  CAS  PubMed  Google Scholar 

  • Feklistova IN, Maksimova NP (2008) Obtaining Pseudomonas aurantiaca strains capable of overproduction of phenazine antibiotics. Microbiology 77(2):176–180

    Article  CAS  Google Scholar 

  • Flaishman M, Eyal Z, Voisard C, Haas D (1990) Suppression of Septoria tritici by phenazine or siderophore deficient mutants of Pseudomonas. Curr Microbiol 20:121–124

    Article  CAS  Google Scholar 

  • Forni C, Duca D, Glick BR (2017) Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant Soil 410(1–2):335–356

    Article  CAS  Google Scholar 

  • Fridlender M, Inbar J, Chet I (1993) Biological control of soilborne plant pathogens by a β-1, 3 glucanase-producing Pseudomonas cepacia. Soil Biol Biochem 25(9):1211–1221

    Article  CAS  Google Scholar 

  • Gaffney TD, LamST LJ, Gates K, Frazelle A, MaioJD HS, Goodwin S, TorkewitzN AAM, Kempf HJ (1994) Global regulation of expression of antifungal factors by a Pseudomonas fluorescensbiological control strain. Mol Plant-Microbe Interact 7(4):455–463

    Article  CAS  PubMed  Google Scholar 

  • Gellatly SL, Hancock RE (2013) Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis 67(3):159–173

    Article  CAS  PubMed  Google Scholar 

  • Gepstein S, Glick BR (2013) Strategies to ameliorate abiotic stress-induced plant senescence. Plant Mol Biol 82(6):623–633

    Article  CAS  PubMed  Google Scholar 

  • Gerhardson B (2002) Biological substitutes for pesticides. Trends Biotechnol 20(8):338–343

    Article  CAS  PubMed  Google Scholar 

  • Girlanda M, Perotto S, Moenne-LoccozY BR, Lazzari A, Defago G, Bonfante P, Luppi AM (2001) Impact of biocontrol Pseudomonas fluorescensCHA0 and a genetically modified derivative on the diversity of culturable fungi in the cucumber rhizosphere. Appl Environ Microbiol 67(4):1851–1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39

    Article  CAS  PubMed  Google Scholar 

  • Gomila M, Peña A, Mulet M, Lalucat J, García-Valdés E (2015) Phylogenomics and systematics in Pseudomonas. Front Microbiol 6:214

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta CP, Kumar B, Dubey RC, Maheshwari DK (2006) Chitinase-mediated destructive antagonistic potential of Pseudomonas aeruginosa GRC 1 against Sclerotinia sclerotiorum causing stem rot of peanut. BioControl 51(6):821–835

    Article  CAS  Google Scholar 

  • Gurusiddaiah S, Weller DM, Sarkar A, Cook RJ (1986) Characterization of an antibiotic produced by a strain of Pseudomonas fluorescensinhibitory to Gaeumannomycesgraminis var. tritici and Pythium spp. Antimicrob Agents Chemother 29:488–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutterson N (1990) Microbial fungicides: recent approaches to elucidating mechanisms. Crit Rev Biotechnol 10(1):69–91

    Article  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3(4):307–319

    Article  CAS  PubMed  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41(1):117–153

    Article  CAS  PubMed  Google Scholar 

  • Haas D, Keel C, Laville J, Maurhofer M, Oberhänsli T, Schnider U, Voisard C, Wüthrich B, Defago G (1991) Secondary metabolites of Pseudomonas fluorescens strain CHA0 involved in the suppression of root diseases. In: Hennecke H, DPS V (eds) Advances in molecular genetics of plant-microbe interactions, vol 1. Springer, Dordrecht, pp 450–456

    Chapter  Google Scholar 

  • Hashimoto M, Hattori K (1966a) Isopyrrolnitrin: a metabolite from Pseudomonas. Bull Chem Soc Jpn 39:410

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M, Hattori K (1966b) Oxypyrrolnitrin: a metabolite of Pseudomonas. Chem Pharm Bull 14:1314–1316

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M, Hattori K (1968) A new metabolite from Pseudomonas pyrrolnitrica. Chem Pharma Bull 16:1144

    CAS  Google Scholar 

  • Hassan MN, Afghan S, Hafeez FY (2011) Biological control of red rot in sugarcane by native pyoluteorin-producing Pseudomonas putida strain NH-50 under field conditions and its potential modes of action. Pest Manag Sci 67(9):1147–1154

    CAS  PubMed  Google Scholar 

  • Hassani HH, Hasan HM, Al-Saadi A, Ali AM, Muhammad MH (2012) A comparative study on cytotoxicity and apoptotic activity of pyocyanin produced by wild type and mutant strains of Pseudomonas aeruginosa. Eur J Exp Biol 2:1389–1394

    CAS  Google Scholar 

  • Heil M, Bostock RM (2002) Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Ann Bot 89(5):503–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howarth FG (1991) Environmental impacts of classical biological control. Annu Rev Entomol 36(1):485–509

    Article  Google Scholar 

  • Howell CR, Stipanovic RD (1979) Control of Rhizoctonia solanion cotton seedlings with Pseudomonas fluorescenswith an antibiotic produced by the bacterium. Phytopathology 69:480–482

    Article  CAS  Google Scholar 

  • Hu W, GaoQ HMS, Dawood DH, Zheng J, Chen Y, Ma Z (2014) Potential of Pseudomonas chlororaphis subsp. aurantiaca strain Pcho10 as a biocontrol agent against Fusarium graminearum. Phytopathology 104(12):1289–1297

    Article  CAS  PubMed  Google Scholar 

  • Iqbal S, Khalid ZM, Malik KA (1995) Enhanced biodegradation and emulsification of crude oil and hyperproduction of biosurfactants by a gamma ray-induced mutant of Pseudomonas aeruginosa. Lett Appl Microbiol 21(3):176–179

    Article  CAS  PubMed  Google Scholar 

  • Itoh S, Honda H, Tomita F, Suzuki T (1971) Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffin (mixture of C12, C13 and C14 fractions). J Antibiot 24(12):855–859

    Article  CAS  Google Scholar 

  • Jackson MK, Phillips SN (1996) Necrotizing hepatitis in pet birds associated with Pseudomonas fluorescens. Avian Dis 40:473–476

    Article  CAS  PubMed  Google Scholar 

  • Jain R, Pandey A (2016) A phenazine-1-carboxylic acid producing polyextremophilic Pseudomonas chlororaphis (MCC2693) strain, isolated from mountain ecosystem, possesses biocontrol and plant growth promotion abilities. Microbiol Res 190:63–71

    Article  CAS  PubMed  Google Scholar 

  • Jang JY, Yang SY, Kim YC, Lee CW, Park MS, Kim JC, Kim IS (2013) Identification of orfamide a as an insecticidal metabolite produced by Pseudomonas protegens F6. J Agric Food Chem 61(28):6786–6791

    Article  CAS  PubMed  Google Scholar 

  • Janisiewicz WJ, Roitman J (1988) Biological control of blue mold and gray mold on apple and pear with Pseudomonas cepacia. Phytopathology 78(12):1697–1700

    Article  Google Scholar 

  • Jimenez PN, Koch G, PapaioannouE WM, Krzeslak J, Coenye T, Quax WJ (2010) Role of PvdQ in Pseudomonas aeruginosa virulence under iron-limiting conditions. Microbiology 156(1):49–59

    Article  CAS  Google Scholar 

  • Kamilova F, Kravchenko LV, Shaposhnikov AI, Azarova T, Makarova N, Lugtenberg B (2006) Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol Plant-Microbe Interact 19(3):250–256

    Article  CAS  PubMed  Google Scholar 

  • Karunanithi K, Muthusamy M, Seetharaman K (2000) Pyrolnitrin production by Pseudomonas fluorescenseffective against Macrophomina phaseolina. Crop Res Hisar 19(2):368–370

    Google Scholar 

  • Keel C, Defago G (1997) Interactions between beneficial soil bacteria and root pathogens: mechanisms and ecological impact. In: Gange AC, Brown VK (eds) Multitrophic interactions in terrestrial systems. Blackwell Scientific Publishers, London, pp 27–46

    Google Scholar 

  • Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger P, Wirthner P, Haas D, Defago G (1992) Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite, 2, 4-diacetylphloroglucinol. Mole Plant-Microbe Interact 5:4–13

    Article  CAS  Google Scholar 

  • Khan H, Parmar N, Kahlon RS (2016) Pseudomonas-plant interactions I: plant growth promotion and defense-mediated mechanisms. In: Kahlon RS (ed) Pseudomonas: molecular and applied biology. Springer International Publishing, New York, pp 419–468

    Chapter  Google Scholar 

  • Kirner S, Hammer PE, Hill DS, Altmann A, Fischer I, Weislo LJ, Lanahan M, van Pée KH, Ligon JM (1998) Functions encoded by pyrrolnitrin biosynthetic genes from Pseudomonas fluorescens. J Bacteriol 180(7):1939–1943

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Curr Microbiol 4(5):317–320

    Article  CAS  Google Scholar 

  • Knowles CJ (1976) Microorganisms and cyanide. Bacteriol Rev 40(3):652

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kraus J, Loper JE (1995) Characterization of a genomic region required for production of the antibiotic pyoluteorin by the biological control agent Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 61(3):849–854

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kruijt M, Tran H, Raaijmakers JM (2009) Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267. J Appl Microbiol 107(2):546–556

    Article  CAS  PubMed  Google Scholar 

  • Kuiper I, LagendijkEL PR, Derrick JP, Lamers GE, Thomas-Oates JE, Lugtenberg BJ, Bloemberg GV (2004) Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Mol Microbiol 51(1):97–113

    Article  CAS  PubMed  Google Scholar 

  • Landa BB, Cachinero-Díaz JM, Lemanceau P, Jiménez-Díaz RM, Alabouvette C (2002) Effect of fusaric acid and phytoanticipins on growth of rhizobacteria and Fusarium oxysporum. Can J Microbiol 48(11):971–985

    Article  CAS  PubMed  Google Scholar 

  • Landa BB, NavasCortés JA, JiménezDíaz RM (2004) Influence of temperature on plant–rhizobacteria interactions related to biocontrol potential for suppression of fusarium wilt of chickpea. Plant Pathol 53(3):341–352

    Article  Google Scholar 

  • Lang S, Wullbrandt D (1999) Rhamnose lipids–biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol 51(1):22–32

    Article  CAS  PubMed  Google Scholar 

  • Lang S, Katsiwela E, Wagner F (1989) Antimicrobial effects of biosurfactants. Eur J Lipid Sci Technol 91(9):363–366

    CAS  Google Scholar 

  • Lanteigne C, Gadkar VJ, Wallon T, Novinscak A, Filion M (2012) Production of DAPG and HCN by Pseudomonas sp. LBUM300 contributes to the biological control of bacterial canker of tomato. Phytopathology 102(10):967–973

    Article  CAS  PubMed  Google Scholar 

  • Laursen JB, Nielsen J (2004) Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem Rev 104(3):1663–1686

    Article  CAS  PubMed  Google Scholar 

  • Leeman M, Van PJA, Hendrickx MJ, Scheffer RJ, Bakker PAHM, Schippers B (1995) Biocontrol of Fusarium wilt of radish in commercial greenhouse trials by seed treatment with Pseudomonas fluorescens WCS374. Phytopathology 85(10):1301–1305

    Article  Google Scholar 

  • Levy E, Gough FJ, Berlin DK, Guiana PW, Smith JT (1992) Inhibition of Septoria tritici and other phytopathogenic fungi and bacteria by Pseudomonas fluorescens and its antibiotics. Plant Pathol 41:335–341

    Article  CAS  Google Scholar 

  • Lewis TA, Cortese MS, SebatJL GTL, Lee CH, Crawford RL (2000) A Pseudomonas stutzeri gene cluster encoding biosynthesis of the CCl4-dechlorination agent pyridine-2, 6-bis (thiocarboxylic acid). Environ Microbiol l2:407–416

    Article  Google Scholar 

  • Li K, Pidatala VR, Shaik R, Datta R, Ramakrishna W (2014) Integrated metabolomic and proteomic approaches dissect the effect of metal-resistant bacteria on maize biomass and copper uptake. Environ Sci Technol 48(2):1184–1193

    Article  CAS  PubMed  Google Scholar 

  • Ligon JM, Hill DS, Hammer PE, Torkewitz NR, HofmannD KHJ, van Pee KH (2000) Natural products with antifungal activity from pseudomonas biocontrol bacteria. Pest Manag Sci 56:688–695

    Article  CAS  Google Scholar 

  • Loper JE, Henkels MD, Shaffer BT, Valeriote FA, Gross H (2008) Isolation and identification of rhizoxin analogs from Pseudomonas fluorescens Pf-5 by using a genomic mining strategy. Appl Environ Microbiol 74:3085–3093

    Google Scholar 

  • Lottmann J, Heuer H, de Vries J, Mahn A, Düring K, Wackernagel W, Smalla K, Berg G (2000) Establishment of introduced antagonistic bacteria in the rhizosphere of transgenic potatoes and their effect on the bacterial community. FEMS Microbiol Ecol 33:41–49

    Article  PubMed  Google Scholar 

  • Lukkani NJ, Reddy ES (2014) Evaluation of plant growth promoting attributes and biocontrol potential of native fluorescent Pseudomonas spp. against Aspergillus niger causing collar rot of ground nut. IJPAES 4(4):256–262

    CAS  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29(2):248–258

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manag 174:14–25

    Article  CAS  Google Scholar 

  • Maier RM, Soberon-Chavez G (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54(5):625–633

    Article  CAS  PubMed  Google Scholar 

  • Maleki M, Mostafaee S, Mokhtarnejad L, Farzaneh M (2010) Characterization of ‘Pseudomonas fluorescens’ strain CV6 isolated from cucumber Rhizosphere in Varamin as a potential biocontrol agent. AJCS 4(9):676

    CAS  Google Scholar 

  • Mark GL, Morrissey JP, Higgins P, O’Gara F (2006) Molecular-based strategies to exploit Pseudomonas biocontrol strains for environmental biotechnology applications. FEMS Microbiol Ecol 56(2):167–177

    Article  CAS  PubMed  Google Scholar 

  • Marugg JD, De Weger LA, Nielander HB, Oorthuizen M, Recourt K, Lugtenberg B, Weisbeek PJ (1989) Cloning and characterization of a gene encoding an outer membrane protein required for siderophore-mediated uptake of Fe3+ in Pseudomonas putida WCS358. J Bacteriol 171(5):2819–2826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthijs S, Abbaspour TK, Laus G, Jackson RW, Cooper RM, Cornelis P (2007) Thioquinolobactin, a Pseudomonas siderophore with antifungal and anti-Pythium activity. Environ Microbiol l9:425–434

    Article  CAS  Google Scholar 

  • Maurhofer M, Keel C, Schnider U, Voisard C, Haas D, Défago G (1992) Influence of enhanced antibiotic production in Pseudomonas fluorescensstrain CHA0 on its disease suppressive capacity. Phytopathology 82(2):190–195

    Article  CAS  Google Scholar 

  • Maurhofer M, Keel C, Haas D, Défago G (1994) Pyoluteorin production byPseudomonas fluorescensstrain CHA0 is involved in the suppression ofPythium damping-off of cress but not of cucumber. Eur J Plant Pathol 100(3):221–232

    Article  CAS  Google Scholar 

  • Maurhofer M, Keel C, Haas D, Défago G (1995) Influence of plant species on disease suppression by Pseudomonas fluorescensstrain CHAO with enhanced antibiotic production. Plant Pathol 44(1):40–50

    Article  Google Scholar 

  • Mavrodi DV, Blankenfeldt W, Thomashow LS (2006) Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol 44:417–445

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42(6):565–572

    Article  CAS  PubMed  Google Scholar 

  • Mazzola M, Cook RJ, Thomashow LS, Weller DM, Pierson LS (1992) Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl Environ Microbiol 58:2616–2624

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mercado-Blanco J, Van der Drift KMGM, Olsson P, Thomas Oates JE, van Loon LC, Bakker PAHM (2001) Analysis of the pmsCEAB gene cluster involved in biosynthesis of salicylic acid and the siderophore pseudomonine in the biocontrol strain Pseudomonasfluorescens WCS374. J Bacteriol 183:1909–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer JA, Abdallah MA (1978) The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties. Microbiology 107(2):319–328

    CAS  Google Scholar 

  • Meyer SL, Halbrendt JM, Carta LK, Skantar AM, Liu T, Abdelnabby HM, Vinyard BT (2009) Toxicity of 2, 4-diacetylphloroglucinol (DAPG) to plantparasitic and bacterial-feeding nematodes. J Nematol 41(4):274

    Google Scholar 

  • Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71(3):413–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moënne-Loccoz Y, Powell J, Higgins P, Britton J, O’Gara F (1998) Effect of the biocontrol agent Pseudomonas fluorescensF113 released as sugarbeet inoculant on the nutrient contents of soil and foliage of a red clover rotation crop. Biol Fertil Soils 27:380–385

    Article  Google Scholar 

  • Mossialos D, Meyer JM, Budzikiewicz H, Wolff U, Koedam N, Baysse C (2000) Quinolobactin, a new siderophore of Pseudomonas fluorescens ATCC 17400 whose production is repressed by the cognate pyoverdine. Appl Environ Microbiol 66:487–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray AE, Bartzokas CA, AJN S, Roberts FM (1987) Blood transfusion-associated Pseudomonas fluorescens septicaemia: is this an increasing problem? J Hosp Infect 9(3):243–248

    Article  CAS  PubMed  Google Scholar 

  • Nagarajkumar M, Bhaskaran R, Velazhahan R (2004) Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiol Res 159(1):73–81

    Google Scholar 

  • Namnyak S, Hussain S, Davalle J, Roker K, Strickland M (1999) Contaminated lithium heparin bottles as a source of pseudobacteraemia due to Pseudomonas fluorescens. J Hosp Infect 41(1):23–28

    Article  CAS  PubMed  Google Scholar 

  • Nascimento FX, Vicente CS, Barbosa P, Espada M, Glick BR, Mota M, Oliveira S (2013) Evidence for the involvement of ACC deaminase from Pseudomonas putida UW4 in the biocontrol of pine wilt disease caused byBursaphelenchusxylophilus. BioControl 58(3):427–433

    Article  CAS  Google Scholar 

  • Natsch A, Keel C, Hebecker N, Laasik E, Défago G (1998) Impact of Pseudomonas fluorescensstrain CHA0 and a derivative with improved biocontrol activity on culturable resident bacterial community on cucumber roots. FEMS Microbiol Ecol 27:365–380

    Article  CAS  Google Scholar 

  • Negi YK, Prabha D, Garg SK, Kumar J (2011) Genetic diversity among cold-tolerant fluorescent Pseudomonas isolates from Indian Himalayas and their characterization for biocontrol and plant growth-promoting activities. J Plant Growth Regul 30(2):128–143

    Article  CAS  Google Scholar 

  • Neilands JB (1981a) Iron absorption and transport in microorganisms. Annu Rev Nutr 1(1):27–46

    Article  CAS  PubMed  Google Scholar 

  • Neilands JB (1981b) Microbial iron compounds. Annu Rev Biochem 50(1):715–731

    Article  CAS  PubMed  Google Scholar 

  • Neilands JB, Leong SA (1986) Siderophores in relation to plant growth and disease. Annu Rev Plant Physiol 37(1):187–208

    Article  CAS  Google Scholar 

  • Neimann S, Keel C, Puhler A, Selbitschka W (1997) Biocontrol strain Pseudomonas fluorescensCHA0 and its genetically modified derivative with enhanced biocontrol capability exert comparable effects on the structure of a Sinorhizobium meliloti population in gnotobiotic systems. Biol Fertil Soils 25:240–244

    Article  Google Scholar 

  • Nielsen TH, Christophersen C, Anthoni U, Sorensen J (1999) Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J Appl Microbiol 87(1):80–90

    Article  CAS  PubMed  Google Scholar 

  • Nielsen TH, Sørensen D, Tobiasen C, Andersen JB, Christophersen C, Givskov M, Sørensen J (2002) Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent pseudomonas spp. from the sugar beet rhizosphere. Appl Environ Microbiol 68(7):3416–3423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimura T, HattoriK IA, Ishii T, Yumoto T, Tsukahara K, Nakao A, Ishihara S, Nakayama S (2017) Bacteremia or pseudobacteremia? Review of Pseudomonas fluorescens infections. World J Emerg Med 8(2):151–154

    Article  PubMed  PubMed Central  Google Scholar 

  • Nitschke M, Costa SG, Contiero J (2005) Rhamnolipid surfactants: an update on the general aspects of these remarkable biomolecules. Biotechnol Prog 21(6):1593–1600

    Article  CAS  PubMed  Google Scholar 

  • Noreen R, Ali SA, Hasan KA, Sultana V, Ara J, Ehteshamul-Haque S (2015) Evaluation of biocontrol potential of fluorescent Pseudomonas associated with root nodules of mungbean. Crop Prot 75:18–24

    Article  Google Scholar 

  • Nose M, Arima K (1969) On the mode of action of a new antifungal antibiotic, pyrrolnitrin. J Antibiot 22(4):135–143

    Article  CAS  PubMed  Google Scholar 

  • Nowak-Thompson B, Chaney N, Wing JS, GouldSJ LJE (1999) Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J Bacteriol 181(7):2166–2174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nybroe O, Sørensen J (2004) Production of cyclic lipopeptides by fluorescent pseudomonads. In: Ramos JL (ed) Pseudomonas, vol 3. Springer, Cham, pp 147–172

    Chapter  Google Scholar 

  • O’sullivan DJ, O’gara F (1991) Genetic improvement of siderophore production aimed at enhancing biocontrol in Pseudomonas strains. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth, vol 14. Springer, Dordrecht, pp 310–310

    Google Scholar 

  • O’sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56(4):662–676

    PubMed  PubMed Central  Google Scholar 

  • Ochsner U, Hembach T, Fiechter A (1996) Production of rhamnolipid biosurfactants. In: Advances in biochemical engineering/biotechnology, vol 53. Springer, Berlin, pp 89–118

    Google Scholar 

  • Ongena M, Jourdan E, Adam A, Schäfer M, Budzikiewicz H, Thonart P (2008) Amino acids, iron, and growth rate as key factors influencing production of the Pseudomonas putida BTP1 benzylamine derivative involved in systemic resistance induction in different plants. Microb Ecol 55(2):280–292

    Article  CAS  PubMed  Google Scholar 

  • Ownley BH, Duffy BK, Weller DM (2003) Identification and manipulation of soil properties to improve the biological control performance of phenazine-producing Pseudomonas fluorescens. Appl Environ Microbiol 69(6):3333–3343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • PandeyA PLMS, Mulkalwar P, Nadeem M (2002) Effect of temperature on solubilization of tricalcium phosphate by Pseudomonas corrugata. J Sci Ind Res 61:457–460

    Google Scholar 

  • Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Pseudomonas fluorescens: a promising biocontrol agent and PGPR for sustainable agriculture. In: Singh PD, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, vol 1. Springer, New Delhi, pp 257–270

    Chapter  Google Scholar 

  • Park JY, SA O, Anderson AJ, Neiswender J, Kim JC, Kim YC (2011) Production of the antifungal compounds phenazine and pyrrolnitrin from pseudomonas chlororaphis O6 is differentially regulated by glucose. Lett Appl Microbiol 52(5):532–537

    Article  CAS  PubMed  Google Scholar 

  • Pathma J, Ayyadurai N, Sakthivel N (2010) Assessment of genetic and functional relationship of antagonistic fluorescent pseudomonads of rice rhizosphere by repetitive sequence, protein coding sequence and functional gene analyses. J Microbiol 48:715–727

    Article  CAS  PubMed  Google Scholar 

  • Patil S, Paradeshi J, Chaudhari B (2016) Suppression of charcoal rot in soybean by moderately halotolerant Pseudomonas aeruginosa GS-33 under saline conditions. J Basic Microbiol 56(8):889–899

    Article  CAS  PubMed  Google Scholar 

  • Patra DD (2012) Production, purification, and characterization of antifungal metabolite from Pseudomonas aeruginosa SD12, a new strain obtained from tannery waste polluted soil. J Microbiol Biotechnol 22(5):674–683

    Article  PubMed  CAS  Google Scholar 

  • Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GS, Mavrodi DV, DeBoy RT, Seshadri R, Ren Q, Madupu R, Dodson RJ (2005) Complete genome sequence of the plant commensal Pseudomonas fluorescensPf-5. Nat Biotechnol 23(7):873–878

    Article  CAS  PubMed  Google Scholar 

  • Pedras MS, Ismail N, Quail JW, Boyetchko SM (2003) Structure, chemistry, and biological activity of pseudophomins A and B, new cyclic lipodepsipeptides isolated from the biocontrol bacterium Pseudomonas fluorescens. Phytochemistry 62(7):1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Perneel M, D’hondt L, De Maeyer K, Adiobo A, Rabaey K, Höfte M (2008) Phenazines and biosurfactants interact in the biological control of soil-borne diseases caused by Pythium spp. Environ Microbiol 10(3):778–788

    Article  PubMed  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, Van Der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nature Rev Microbiol 11(11):789–799

    Article  CAS  Google Scholar 

  • Picot L, Abdelmoula SM, Merieau A, Leroux P, Cazin L, Orange N, Feuilloley MG (2001) Pseudomonas fluorescensas a potential pathogen: adherence to nerve cells. Microb Infect 3(12):985–995

    Article  CAS  Google Scholar 

  • Pierson LS, Pierson EA (1996) Phenazine antibiotic production in Pseudomonas aureofaciens: role in rhizosphere ecology and pathogen suppression. FEMS Microbiol Lett 136(2):101–108

    Article  CAS  Google Scholar 

  • Pingali PL (2012) Green revolution: impacts, limits, and the path ahead. Proc Natl Acad Sci 109(31):12302–12308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poole K, McKay GA (2003) Iron acquisition and its control in Pseudomonas aeruginosa: many roads lead to Rome. Front Biosci 8(1):661–686

    Article  Google Scholar 

  • Postma J, Montanari M, van den Boogert PH (2003) Microbial enrichment to enhance the disease suppressive activity of compost. Eur J Soil Biol 39(3):157–163

    Article  Google Scholar 

  • Premachandra D, Hudek L, Brau L (2016) Bacterial modes of action for enhancing of plant growth. J Biotechnol Biomater 6(3):1–8

    Google Scholar 

  • Price-Whelan A, Dietrich LE, Newman DK (2006) Rethinking‘secondary’metabolism: physiological roles for phenazine antibiotics. Nat Chem Biol 2(2):71–78

    Article  CAS  PubMed  Google Scholar 

  • Quagliotto L, Azziz G, Bajsa N, Vaz P, Pérez C, Ducamp F, Cadenazzi M, Altier N, Arias A (2009) Three native Pseudomonas fluorescens strains tested under growth chamber and field conditions as biocontrol agents against damping-off in alfalfa. BioControl 51(1):42–50

    Google Scholar 

  • Raaijmakers JM, Weller DM (1998) Natural plant protection by 2, 4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. Mol Plant Microbe Interact 11(2):144–152

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Weller DM (2001) Exploiting genotypic diversity of 2,4-diacetylphloroglucinol-producing Pseudomonas spp.: characterization of superior rootcolonizingP. fluorescens strain Q8r1-96. Appl Environ Microbiol 67:2545–2554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raaijmakers JM, Leeman M, Van Oorschot MM, Van der Sluis I, Schippers B, Bakker PAHM (1995) Dose-response relationships in biological control of fusarium wilt of radish by Pseudomonas spp. Phytopathology 85(10):1075–1080

    Article  Google Scholar 

  • Raaijmakers JM, Vlami M, De Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81(1):537–547

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, de Bruijn I, de Kock MJ (2006) Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol Plant Microbe Interact 19(7):699–710

    Article  CAS  PubMed  Google Scholar 

  • Rai A, Rai PK, Singh S (2017) Exploiting beneficial traits of plant-associated fluorescent pseudomonads for plant health. In: Singh JS, Seneviratne G (eds) Agro-environmental sustainability, vol 1. Springer, Cham, pp 19–41

    Chapter  Google Scholar 

  • Raio A, Reveglia P, Puopolo G, Cimmino A, Danti R, Evidente A (2017) Involvement of phenazine-1-carboxylic acid in the interaction between Pseudomonas chlororaphis subsp. aureofaciens strain M71 and Seiridium cardinal in vivo. Microbiol Res 199:49–56

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Ae N, MNV P, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28(3):142–149

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30(6):1562–1574

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Prasad MNV, Swaminathan S, Freitas H (2013) Climate change driven plant–metal–microbe interactions. Environ Int 53:74–86

    Article  CAS  PubMed  Google Scholar 

  • Ramesh R, Joshi AA, Ghanekar MP (2009) Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L.) World J Microbiol Biotechnol 25(1):47–55

    Article  Google Scholar 

  • Ramirez RJ, Quintana PP, Galvan JJC, Diaz JG (1989) Colestasis intrahepatica severa en el curso de sepsis por Pseudomonas fluorescens. Rev Clin Esp 185:106–107

    Google Scholar 

  • Raymond KN, Dertz EA (2004) Biochemical and physical properties ofsiderophores. In: Raymond KN, Dertz EA (eds) Iron transport in bacteria. American Society of Microbiology, Washington, pp 3–17

    Chapter  Google Scholar 

  • Raza ZA, Rehman A, Khan MS, Khalid ZM (2007) Improved production of biosurfactant by a Pseudomonas aeruginosa mutant using vegetable oil refinery wastes. Biodegradation 18(1):115–121

    Article  CAS  PubMed  Google Scholar 

  • Roongsawang N, Hase KI, Haruki M, Imanaka T, Morikawa M, Kanaya S (2003) Cloning and characterization of the gene cluster encoding arthrofactin synthetase from Pseudomonas sp. MIS38. Chem Biol 10(9):869–880

    Article  CAS  PubMed  Google Scholar 

  • Rudrappa T, Splaine RE, Biedrzycki ML, Bais HP (2008) Cyanogenic pseudomonads influence multitrophic interactions in the rhizosphere. PLoS One 3(4):2073

    Article  CAS  Google Scholar 

  • Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97(3):1005–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha R, Saha N, Donofrio RS, Bestervelt LL (2013) Microbial siderophores: a mini review. J Basic Microbiol 53(4):303–317

    Article  PubMed  Google Scholar 

  • Sahu G, Sindhu S (2011) Disease control and plant growth promotion of green gram by siderophore producing Pseudomonas sp. Res J Microbiol 6:735–749

    Article  Google Scholar 

  • Santoyo G, Orozco-Mosqueda MDC, Govindappa M (2012) Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Sci Tech 22(8):855–872

    Article  Google Scholar 

  • Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169(1):18–29

    Article  CAS  PubMed  Google Scholar 

  • Sarubbi FA, Wilson MB, Lee M, Brokopp C (1978) Nosocomial meningitis and bacteremia due to contaminated amphotericin. B. JAMA 239(5):416–418

    Article  PubMed  Google Scholar 

  • Sasirekha B, Srividya S (2016) Siderophore production by Pseudomonas aeruginosa FP6, a biocontrol strain for Rhizoctonia solani and Colletotrichum gloeosporioides causing diseases in chilli. Agric Nat Resour 50(4):250–256

    Google Scholar 

  • Sayyed RZ, Patel PR (2011) Biocontrol potential of siderophore producing heavy metal resistant Alcaligenes sp. and Pseudomonas aeruginosa RZS3 vis-a-vis organophosphorus fungicide. Indian J Microbiol 51(3):266–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schippers B, Bakker AW, Bakker PAHM, Van Peer R (1991) Beneficial and deleterious effects of HCN-producing pseudomonads on rhizosphere interactions. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth, vol 14. Springer, Dordrecht, pp 211–219

    Chapter  Google Scholar 

  • Shanahan PO, Sullivan DJ, Simpson P, Glennon JD, O Gara F (1992) Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol 58:353–358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Shankhdhar D, Shankhdhar SC (2013) Enhancing grain iron content of rice by the application of plant growth promoting rhizobacteria. Plant Soil Environ 59(2):89–94

    CAS  Google Scholar 

  • Siddiqui IA, Shaukat SS (2003) Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite, 2, 4-diacetylpholoroglucinol. Soil Biol Biochem 35(12):1615–1623

    Article  CAS  Google Scholar 

  • Siddiqui IA, Shaukat SS, Sheikh IH, Khan A (2006) Role of cyanide production by Pseudomonas fluorescensHA0 in the suppression of root-knot nematode, Meloidogyne javanica in tomato. World J Microbiol Biotechnol 22(6):641–650

    Article  CAS  Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011) Effecient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140(3):339–353

    Article  Google Scholar 

  • Skaar EP (2010) The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog 6(8):1000949

    Article  CAS  Google Scholar 

  • Sneh B, Dupler M, Elad Y, Baker R (1984) Chlamydospore germination of Fusarium oxysporum f. sp. cucumerinum as affected by fluorescent and lytic bacteria from a Fusarium-suppressive soil. Phytopathology 74(9):1115–1124

    Article  Google Scholar 

  • Soberón-Chávez G (2004) Biosynthesis of rhamnolipids. In: Ramos JL (ed) Pseudomonas. Springer, New York, pp 173–189

    Chapter  Google Scholar 

  • Soberón-Chávez G, Lépine F, Déziel E (2005) Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 68(6):718–725

    Article  PubMed  CAS  Google Scholar 

  • Solomonson LP (1981) Cyanide as a metabolic inhibitor. In: Vennesland B, Conn EE, Knowles CJ, Westley J, Wissing F (eds) Cyanide in biology. Academic, London, pp 11–28

    Google Scholar 

  • Sorensen D, Nielsen TH, Christophersen C, Sorensen J, Gajhede M (2001) Cyclic lipoundecapeptide Amphisin from Pseudomonas sp. strain DSS73. Acta Crystallogr C 57:1123–1124

    Article  CAS  PubMed  Google Scholar 

  • Sturz AV, Christie BR (2003) Beneficial microbial allelopathies in the root zone: the management of soil quality and plant disease with rhizobacteria. Soil Tillage Res 72(2):107–123

    Article  Google Scholar 

  • Subashri R, Raman G, Sakthivel N (2013) Biological control of pathogens and plant growth promotion potential of fluorescent Pseudomonads. In: Maheshwari DK (ed) Bacteria in agrobiology: disease management. Springer, Berlin/Heidelberg, pp 77–110

    Chapter  Google Scholar 

  • Sudhakar T, Karpagam S, Shiyama S (2013) Analysis of pyocyanin compound and its antagonistic activity against phytopathogens. Int J ChemTech Res 5:1101–1106

    CAS  Google Scholar 

  • Sulochana MB, Jayachandra SY, Kumar SK, Dayanand A (2014) Antifungal attributes of siderophore produced by the Pseudomonas aeruginosa JAS-25. J Basic Microbiol 54(5):418–424

    Article  CAS  PubMed  Google Scholar 

  • Sunish Kumar R, Ayyadurai N, Pandiaraja P, Reddy AV, Venkateswarlu Y, Prakash O, Sakthivel N (2005) Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad-spectrum antifungal activity and biofertilizing traits. J Appl Microbiol 98:145–154

    Article  PubMed  CAS  Google Scholar 

  • Tablan OC, Chorba TL, Schidlow DV, White JW, Hardy KA, Gilligan PH, Jarvis WR (1985) Pseudomonas cepacia colonization in patients with cystic fibrosis: risk factors and clinical outcome. J Pediatr 107(3):382–387

    Article  CAS  PubMed  Google Scholar 

  • Tambong JT, Höfte M (2001) Phenazines are involved in biocontrol of Pythium myriotylum on cocoyam by Pseudomonas aeruginosa PNA1. Eur J Plant Pathol 107(5):511–521

    Article  CAS  Google Scholar 

  • Tapadar SA, Jha DK (2013) Disease management in staple crops: a bacteriological approach. In: Bacteria in agrobiology: disease management. Springer, Berlin/Heidelberg, pp 111–152

    Google Scholar 

  • Tekeda R (1958) Pseudomonas pigments I. Pyoluteorin a new chlorine-containing pigment produced by Pseudomonas aeruginosa. Hakko Kogaku Zasshi 36:281–290

    Google Scholar 

  • Thomashow LS, Weller DM (1988) Role of a phenazine antibiotic from Pseudomonas fluorescensin biological control of Gaeumannomyces graminis var. tritici. J Bacteriol 170(8):3499–3508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomashow LS, Weller DM, Bonsall RF, Pierson LS (1990) Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl Environ Microbiol 56(4):908–912

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomashow LS, Pierson LS (1991) Genetic aspects of phenazine antibiotic production by fluorescent pseudomonads that suppress take-all disease of wheat. In: Advances in molecular genetics of plant-microbe interactions, vol 1. Springer Netherlands, Dordrecht, pp 443–449

    Google Scholar 

  • Tombolini R, Vander Gaag DJ, Gerhardson B, Jansson JK (1999) Colonization pattern of the biocontrol strain Pseudomonas chlororaphisMA342 on barely seeds visualized by using green fluorescent protein. Appl Environ Microbiol 65:3674–3680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trivedi P, Pandey A, Palni LMS (2008) In vitro evaluation of antagonistic properties of Pseudomonas corrugata. Microbiol Res 163(3):329–336

    Article  PubMed  Google Scholar 

  • Trotel-Aziz P, Couderchet M, Biagianti S, Aziz A (2008) Characterization of new bacterial biocontrol agents Acinetobacter, Bacillus, Pantoea and Pseudomonas spp. mediating grapevine resistance against Botrytis cinerea. Environ Exp Bot 64(1):21–32

    Article  Google Scholar 

  • Turner JM, Messenger AJ (1986) Occurrence, biochemistry and physiology of phenazine pigment production. Adv Microb Physiol 27:211–275

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay A, Srivastava S (2011) Phenazine-1-carboxylic acid is a more important contributor to biocontrol Fusarium oxysporum than pyrrolnitrin in Pseudomonas fluorescens strain Psd. Microbiol Res 166(4):323–335

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay RS, Visintin L, Jayaswal RK (1991) Environmental factors affecting the antagonism of Pseudomonas cepacia against Trichoderma viride. Can J Microbiol 37(11):880–884

    Article  CAS  PubMed  Google Scholar 

  • van Elsas JD, Migheli Q (2002) Evaluation of risks related to the release of biocontrol agents active against plant pathogens. In: Albajes R, Guliino ML, van Lenteren JC, Elad Y (eds) Integrated pest and disease management in greenhouse crops. Developments in plant pathology, vol 14. Springer, Dordrecht, pp 377–393

    Chapter  Google Scholar 

  • van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36(1):453–483

    Article  PubMed  Google Scholar 

  • van Peer R, Schippers B (1989) Plant growth responses to bacterization with selected Pseudomonas spp. strains and rhizosphere microbial development in hydroponic cultures. Can J Microbiol 35(4):456–463

    Article  Google Scholar 

  • van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS 417 r. Phytopathology 81(7):728–734

    Article  Google Scholar 

  • van Rij ET, Wesselink M, Chin-A-Woeng TF, Bloemberg GV, Lugtenberg BJ (2004) Influence of environmental conditions on the production of phenazine-1-carboxamide byPseudomonas chlororaphis PCL1391. Mol Plant Microbe Interact 7(5):557–566

    Google Scholar 

  • van Wees SCM, Pieterse CMJ, Trijssenaar A, Van T, Westende YAM, Hartog F, van Loon LC (1997) Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol Plant-Microbe Interact 10:716–724

    Article  PubMed  Google Scholar 

  • Vandenbergh PA, Gonzalez CF, Microlife Technics Inc (1984) Method for protecting the growth of plants employing mutant siderophore producing strains of Pseudomonas putida. US Patent 4,479,936, 30 Oct 1984

    Google Scholar 

  • Vázquez MM, César S, Azcón R, Barea JM (2000) Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl Soil Ecol 15:261–272

    Article  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586

    Article  CAS  Google Scholar 

  • Voisard C, Keel C, Haas D, Defago G (1981) Cyanide production in Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358

    Google Scholar 

  • Walsh UF, Morrissey JP, O’Gara F (2001) Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotechnol 12(3):289–295

    Article  CAS  PubMed  Google Scholar 

  • Wei G, Kloepper JW, TuZun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81(11):1508–1512

    Article  Google Scholar 

  • Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Article  Google Scholar 

  • Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97(2):250–256

    Article  PubMed  Google Scholar 

  • Weller DM, Landa BB, Mavrodi OV, Schroeder KL, De La Fuente L, Bankhead SB, Molar RA, Bonsall RF, Mavrodi DV, Thomashow LS (2007) Role of 2, 4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biol 9(01):4–20

    Article  CAS  PubMed  Google Scholar 

  • Weller DM, Mavrodi DV, van Pelt JA, Pieterse CM, van Loon LC, Bakker PA (2012) Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonasfluorescens. Phytopathology 102(4):403–412

    Article  CAS  PubMed  Google Scholar 

  • Wensing A, Braun SD, Büttner P, Expert D, Völksch B, Ullrich MS, Weingart H (2010) Impact of siderophore production by Pseudomonas syringaepv. syringae 22d/93 on epiphytic fitness and biocontrol activity against Pseudomonas syringae pv. glycinea 1a/96. Appl Environ Microbiol 76(9):2704–2711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong DT, Airall JM (1970) The mode of action of antifungal agents: effect of pyrrolnitrin on mitochondrial electron transport. J Antibiot 23(2):55–62

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Pan X, Luo J, Wu J, Zhou Z, Liang X, He Y, Zhou M (2015) Effects of phenazine-1-carboxylic acid on the biology of the plant-pathogenic bacterium Xanthomonas oryzae pv. oryzae. Pest Biochem Physiol 117:39–46

    Article  CAS  Google Scholar 

  • Yang M, Mavrodi DV, Mavrodi OV, Thomashow LS, Weller DM (2017) Construction of a recombinant strain of Pseudomonas fluorescensproducing both phenazine-1-carboxylic acid and cyclic lipopeptide for the biocontrol of take-all disease of wheat. Eur J Plant Pathol 1–12

    Google Scholar 

  • Yoshihisa H, Zenji S, Fukushi H, Katsuhiro K, Haruhisa S, Takahito S (1989) Production of antibiotics by Pseudomonas cepacia as an agent for biological control of soilborne plant pathogens. Soil Biol Biochem 21(5):723–728

    Article  Google Scholar 

  • Zhang L, Tian X, Kuang S, Liu G, Zhang C, Sun C (2017) Antagonistic activity and mode of action of phenazine-1-carboxylic acid, produced by marine bacterium Pseudomonas aeruginosa PA31x, against Vibrio anguillarumin vitro and in a Zebrafish in vivo model. Front Microbio l8:289

    Google Scholar 

  • Zhou T, Paulitz TC (1994) Induced resistance in the biocontrol of Pythium aphanidermatum by Pseudomonas spp. on cucumber. J Phytopathol 142(1):51–63

    Article  Google Scholar 

  • Zhou T, Chen D, Li C, Sun Q, Li L, Liu F, Shen Q, Shen B (2012) Isolation and characterization of Pseudomonas brassicacearum J12 as an antagonist against Ralstonia solanacearum and identification of its antimicrobial components. Microbiol Res 167(7):388–394

    Article  CAS  PubMed  Google Scholar 

  • Zhou T, Li CY, Chen D, Wu K, Shen QR, Shen B (2014) phlF− mutant of Pseudomonas fluorescens J2 improved 2, 4-DAPG biosynthesis and biocontrol efficacy against tomato bacterial wilt. BioControl 78:1–8

    Google Scholar 

  • Zohara F, Akanda MAM, Paul NC, Rahman M, Islam MT (2015) Inhibitory effects of Pseudomonas spp. on plant pathogen Phytophthora capsici in vitro and in planta. Biocatal Agric Biotechnol 5:69–77

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to University Grants Commission, New Delhi, for SAP-DRS-III infrastructural grant and DST-FIST grant of Dept. of Science and Tech., New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhushan L. Chaudhari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaudhari, B.L., Patil, S.N., Paradeshi, J.S., Chaudhari, M.A., Chaudhari, C.S. (2017). Premier Biocontrol Traits of Pseudomonads: Siderophores, Phenazines or What Else?. In: Panpatte, D., Jhala, Y., Vyas, R., Shelat, H. (eds) Microorganisms for Green Revolution. Microorganisms for Sustainability, vol 6. Springer, Singapore. https://doi.org/10.1007/978-981-10-6241-4_18

Download citation

Publish with us

Policies and ethics