Skip to main content

Endophyte Microbes: A Weapon for Plant Health Management

  • Chapter
  • First Online:
Microorganisms for Green Revolution

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 6))

Abstract

Endophytes are symptomless fungal or bacterial microorganisms found in almost all living plant species reported so far. Most of the endophytes form a symbiotic association with their host plants by colonizing the internal tissues, which has made them valuable for agriculture as a tool in improving crop health. Bacterial and fungal endophytes are also a valuable source of several key components such as phytohormones (auxins and gibberellins) that help in growth and development of the host plant. Some of the chemicals produced by endophytic microbes have antifungal, antibacterial, and insecticidal properties, which strongly inhibit the growth of other organisms, including phytopathogens. Natural compounds that have been isolated from endophytes can be used as an alternative source with direct application in diverse fields ranging from crop protection to human welfare. They also help the host plants to tolerate various biotic and abiotic stress conditions resulting in better growth and higher yield. Also, endophytic fungi have been emerging as an ideal tool in biotechnology and crop protection research. In this chapter, the historical development of the term endophyte, isolation, and identification techniques, colonization pathways, host-endophyte interactions, and recent advances in the utilization of endophytes in plant health management are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdallah RA, Mokni-Tlili S, Nefzi A et al (2016) Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Nicotiana glauca organs. Biol Control 97:80–88

    Article  Google Scholar 

  • Adhikari TB, Joseph CM, Yang GP et al (2001) Evaluation of bacteria isolated from rice for plant growth promotion and biological control of seedling disease of rice. Can J Microbiol 47:916–924

    Article  PubMed  CAS  Google Scholar 

  • Ait BE, Nowak J, Clement C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7252

    Article  CAS  Google Scholar 

  • Alvin A, Kalaitzis JA, Sasia B, Neilan BA (2016) Combined genetic and bioactivity-based prioritization leads to the isolation of an endophyte-derived antimycobacterial compound. J Appl Microbiol 120:1229–1239

    Article  PubMed  CAS  Google Scholar 

  • Amin N, Salam M, Junaid M, Baco MS (2014) Isolation and identification of endophytic fungi from cocoa plant resistante VSD M.05 and cocoa plant susceptible VSD M.01 in South Sulawesi, Indonesia. Int J Curr Microbiol Appl Sci 3:459–467

    Google Scholar 

  • Andrade LF, De Souza GL, Nietsche S et al (2014) Analysis of the abilities of endophytic bacteria associated with banana tree roots to promote plant growth. J Microbiol 52:27–34

    Google Scholar 

  • Araujo WL, Lacava PT, Andreote FD, Azevedo JL (2008) Interaction between endophytes and plant host: biotechnological aspects. In: Barka EA, Clément C (eds) Plant-microbe interactions. Research Signpost, Trivandrum, pp 95–115

    Google Scholar 

  • Baltruschat H, Fodor J, Harrach BD, Niemczyk E et al (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180(2):501–510

    Article  PubMed  CAS  Google Scholar 

  • Beijerinck MW (1888) Cultur des bacillus radicola aus den Knöllchen. Bot Ztg 46:740–750

    Google Scholar 

  • Bernheim H (1888) Die parasitären Bakterien der Ceralien. Chemiker-Zeitung 12:1321

    Google Scholar 

  • Bredow C, Azevedo JL, Pamphile JA et al (2015) In silico analysis of the 16S rRNA gene of endophytic bacteria, isolated from the aerial parts and seeds of important agricultural crops. Genet Mol Res 14:9703–9721

    Article  PubMed  CAS  Google Scholar 

  • Chanway CP (1996) Endophytes: they’re not just fungi! Can J Bot 74:321–322

    Article  Google Scholar 

  • Chen J, Wang H, Guo SX (2012) Isolation and identification of endophytic and mycorrhizal fungi from seeds and roots of Dendrobium (Orchidaceae). Mycorrhiza 22:297–307

    Article  PubMed  Google Scholar 

  • Clarridge JE, Alerts C (2004) Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev 17:840–862. https://doi.org/10.1128/CMR.17.4.840

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cocking EC, Stone PJ, Davey MR (2006) Intracellular colonization of roots of Arabidopsis and crop plants by Gluconacetobacter diazotrophicus. In Vitr Cell Dev Biol – Plant 42:74–82

    Article  Google Scholar 

  • Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462

    Article  CAS  Google Scholar 

  • Compant S, Reiter B, Nowak J et al (2005) Endophytic colonization of Vitis vinifera L. by plant growth- promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693

    Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Compant S, Mitter B, Colli-Mull JG et al (2011) Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol 62:188–197

    Article  PubMed  Google Scholar 

  • Compant S, Sessitsch A, Mathieu F (2012) The 125th anniversary of the first postulation of the soil origin of endophytic bacteria- a tribute to M.L.V. Galippe. Plant Soil 356:299–301

    Article  CAS  Google Scholar 

  • Cook RJ, Baker KF (1983) The nature and practice of biological control of plant pathogens. American Phytopathological Society, University of Michigan, Ann Arbor, p 539

    Google Scholar 

  • De Bary A (1866) Morphologie und Physiologie der Pilze, Flechten und Myxomyceten. Verlag von Wilhelm Engelmann, Leipzig

    Book  Google Scholar 

  • Fernandez O, Theocharis A, Bordiec S et al (2012) Burkholderia phytofirmans PsJN acclimates grapevine to cold by modulating carbohydrate metabolism. Mol Plant-Microbe Interact 25:496–504

    Article  PubMed  CAS  Google Scholar 

  • Fernbach A (1888) De l’absence des microbes dans les tissus végétaux. Ann Inst Pasteur 2:567–570

    Google Scholar 

  • Freeman EM (1904) The seed fungus of Lolium temulentum L., the darnel. Philos Trans R Soc London B 196:1–27

    Article  Google Scholar 

  • Fukuda Y, Shinshi H (1994) Characterization of a novel cis-acting element that is responsive to fungal elicitor in the promoter of a tobacco class I chitinases gene. Plant Mol Biol 24:485–493

    Article  PubMed  CAS  Google Scholar 

  • Fürnkranz M, Lukesch B, Müller H et al (2012) Microbial diversity inside pumpkins: microhabitat-specific communities display a high antagonistic potential against phytopathogens. Microb Ecol 63:418–428

    Article  PubMed  CAS  Google Scholar 

  • Galippe V (1887a) Note sur la présence de micro-organismes dans les tissus végétaux. C R Seances Soc Biol Fil 39:410–416

    Google Scholar 

  • Galippe V (1887b) Note sur la présence de micro-organismes dans les tissus végétaux (deuxième note). C R Seances Soc Biol Fil 39:557–560

    Google Scholar 

  • Gangadevi V, Muthumary J (2008) Taxol, an anticancer drug produced by an endophytic fungus Bartalinia robillardoides Tassi, isolated from a medicinal plant, Aegle marmelos Correa ex Roxb. World J Microbiol Biotechnol 24:717–724

    Article  CAS  Google Scholar 

  • Gao FK, Dai CC, Liu XZ (2010) Mechanism of fungal endophytes in plant protection against pathogen. Afr J Microbiol Res 4:1346–1351

    Google Scholar 

  • Garcia de Salome IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411

    Article  Google Scholar 

  • Garcia de Salome IE, Hynes RK, Nelson LM (2006) Role of cytokinins in plant growth promotion by rhizosphere bacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilisation. Springer, Dordrecht, pp 173–195

    Google Scholar 

  • Gasser I, Cardinale M, Muller H et al (2011) Analysis of the endophytic lifestyle and plant growth promotion of Burkholderia terricola ZR2-12. Plant Soil 347:125–136

    Article  CAS  Google Scholar 

  • Gimenez C, Cabrera R, Reina M, Coloma A (2007) Fungal endophytes and their role in plant protection. Curr Org Chem 11:707–720

    Article  CAS  Google Scholar 

  • Glick BR, Todorovic B, Czarny J et al (2007) Promotion of plant growth by bacterial ACC deaminase. Cr Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Gond SK, Verma VC, Kumar A et al (2007) Study of endophytic fungal community from different parts of Aegle marmelos Correae (Rutaceae) from Varanasi (India). World J Microbiol Biotechnol 23:1371–1375

    Article  Google Scholar 

  • Goutam J (2016) Isolation and identification of antibacterial compounds isolated from endophytic fungus Emericella qaudrilineata. Nat Prod Chem Res 4:205

    Article  Google Scholar 

  • Guo J, Grosch R, Schwarz D (2013) Impact of Piriformospora indica on the growth of different tropical vegetables and on Fusarium oxysporum f. sp. niveum. In: Proceedings of the 5th International Symposium on plant protection and plant health in Europe, p 184

    Google Scholar 

  • Hajibabaei M, Janzen DH, Burns JM et al (2006) DNA barcodes distinguish species of tropical Lepidoptera. Proc Natl Acad Sci U S A 103:968–971

    Article  PubMed  PubMed Central  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, Van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  PubMed  CAS  Google Scholar 

  • Hardoim PR, Hardoim CCP, van Overbeek LS, van Elsas JD (2012) Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS One 7:e30438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hardoim PR, van OLS, Berg G et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Harman GE, Howell CR, Viterbo A et al (2004) Trichoderma species opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  PubMed  CAS  Google Scholar 

  • Hassan E, Hossein AA (2016) Suppression of the fungal pathogen Magnaporthe grisea by Stenotrophomonas maltophilia, a seed-borne rice (Oryza sativa L.) endophytic bacterium. Arch Agron Soil Sci 62:1271–1284

    Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, de Waard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B 270:313–321

    Article  CAS  Google Scholar 

  • Hiruma K, Gerlach N, Sacristán S et al (2016) Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell 165:464–474

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hurek T, Reinhold-Hurek B, Van Montagu M, Kellenberger E (1994) Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J Bacteriol 176:1913–1923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ikeda AC, Bassani LL, Adamoski D et al (2013) Morphological and genetic characterization of endophytic bacteria isolated from roots of different maize genotypes. Microb Ecol 65:154–160

    Article  PubMed  Google Scholar 

  • Jaber LR, Vidal S, Pertot I (2013) Can endophytic Beauveria bassiana protect grapevine against Plasmopara viticola? In: Proceedings of endophytes for plant protection: the state of the art, p 169

    Google Scholar 

  • James E, Reis V, Olivares F et al (1994) Infection of sugar cane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. J Exp Bot 45:757–766

    Article  CAS  Google Scholar 

  • Janda JM, Abbott SL (2007) 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol 45:2761–2764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jha Y, Subramanian RB, Patel S (2011) Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33:797–802

    Article  Google Scholar 

  • Johnson LJ, Koulman A, Christensen M et al (2013) An extracellular siderophore is required to maintain the mutualistic interaction of Epichloe festucae with Lolium perenne. PLoS Pathog 9:e1003332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kajula M, Tejesvi MV, Kolehmainen S et al (2010) The siderophore ferricrocin produced by specific foliar endophytic fungi in vitro. Fungal Biol 114:248–254

    Article  PubMed  CAS  Google Scholar 

  • Kavroulakis NS, Zervakis GI, Ehaliotis C et al (2007) Role of ethylene in the protection of tomato plants against soil-borne fungal pathogens conferred by an endophytic Fusarium solani strain. J Exp Bot 58:3853–3864

    Article  PubMed  CAS  Google Scholar 

  • Khamchatra NM, Dixon K, Chayamarit K et al (2016) Using in situ seed baiting technique to isolate and identify endophytic and mycorrhizal fungi from seeds of a threatened epiphytic orchid, Dendrobium friedericksianum Rchb.f. (Orchidaceae). Agric Nat Resour 50:8–13

    Google Scholar 

  • Khaosaad T, Garcia-Garrido JM, Steinkellner S, Vierheilig H (2007) Take-all disease is systemically reduced in roots of mycorrhizal barley plants. Soil Biol Biochem 39:727–734

    Article  CAS  Google Scholar 

  • Kharwar RN, Verma VC, Strobel G, Ezra D (2008) The endophytic fungal complex of Catharanthus roseus (L.) G. Don. Curr Sci 95:228–233

    CAS  Google Scholar 

  • Kharwar RN, Verma VC, Kumar A (2009) Javanicin, an antibacterial naphthaquinone from an endophytic fungus of neem – Chloridium sp. Curr Microbiol 58:233–238

    Article  PubMed  CAS  Google Scholar 

  • Kloepper JW, Ryu CM (2006) Bacterial endophytes as elicitors of induced systemic resistance. In: Microbial root endophytes. Springer, Berlin/Heidelberg, pp 33–52

    Chapter  Google Scholar 

  • Kobayashi DY, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF (eds) Microbial endophytes. Dekker, New York, pp 199–236

    Google Scholar 

  • Kour A, Shawl AS, Rehman S et al (2008) Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva. World J Microbiol Biotechnol 24:1115–1121

    Article  CAS  Google Scholar 

  • Kraus J, Loper JE (1992) Lack of evidence for a role of antifungal metabolite production by Pseudomonas fluorescens Pf-5 in biological control of Pythium damping-off of cucumber. Phytopathology 82:264–271

    Article  Google Scholar 

  • Krings M, Taylor TN, Hass H et al (2007) Fungal endophytes in a 400-million-yr-old land plant: infection pathways, spatial distribution, and host responses. New Phytol 174:648–657

    Article  PubMed  Google Scholar 

  • Letourneau A, Seena S, Marvanová L, Bärlocher F (2010) Potential use of barcoding to identify aquatic hyphomycetes. Fungal Divers 40:51–64

    Article  Google Scholar 

  • Lin X, Lu C, Huang Y et al (2007) Endophytic fungi from a pharmaceutical plant, Camptotheca acuminata: isolation, identification and bioactivity. World J Microbiol Biotechnol 23:1037–1040

    Article  Google Scholar 

  • Lin X, Huang YJ, Zheng ZH et al (2010) Endophytes from the pharmaceutical plant, Annona squamosa: isolation, bioactivity, identification and diversity of its polyketide synthase gene. Fungal Divers 41:41–51

    Article  Google Scholar 

  • Link HF (1809) Observationes in ordines plantarum naturales, dissertation prima, complectens anandrarum ordines Epiphytas, Mucedines, Gastromycos et Fungos. Der Gesellschaft Naturforschender Freunde zu Berlin, Berlin

    Google Scholar 

  • Lowman S, Kim-Dura S, Mei C, Nowak J (2016) Strategies for enhancement of switchgrass (Panicum virgatum L.) performance under limited nitrogen supply based on utilization of N-fixing bacterial endophytes. Plant Soil 405:47–63

    Article  CAS  Google Scholar 

  • Lu H, Zou WX, Meng JC et al (2000) New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Sci 151:67–73

    Article  CAS  Google Scholar 

  • Lu F, Sun L, Lu Z et al (2007) Isolation and identification of an endophytic strain EJS-3 producing novel fibrinolytic enzymes. Curr Microbiol 54:435–439

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg B, Malfanova N, Kamilova F, Berg G (2013) Plant growth promotion by microbes. In: Molecular microbial ecology of the rhizosphere. Wiley-Blackwell, Hoboken, pp 561–073

    Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009) Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manag 90:831–837

    Article  Google Scholar 

  • Macia-Vicente JG, Jansson HB, Mendgen K, Lopez-Llorca LV (2008) Colonization of barley roots by endophytic fungi and their reduction of take-all caused by Gaeumannomyces graminis var. tritici. Can J Microbiol 54:600–609

    Article  PubMed  CAS  Google Scholar 

  • Malfanova N, Lugtenberg B, Berg G (2013) Bacterial Endophytes: who and where and what are they doing there? In: de Bruijn FJ (ed) Molecular microbial ecology of the Rhizosphere. Wiley-Blackwell, Hoboken, pp 15–37

    Google Scholar 

  • Malfanova N, Kamilova F, Validov et al (2011) Characterization of Bacillus subtilis HC8, a novel plant-beneficial endophytic strain from giant hogweed. Microb Biotech 4:523–532

    Google Scholar 

  • Malinowski DP, Zuo H, Belesky DP, Alloush GA (2004) Evidence for copper binding by extracellular root exudates of tall fescue but not perennial ryegrass infected with Neotyphodium spp. endophytes. Plant Soil 267:1–12

    Article  CAS  Google Scholar 

  • Martins F, Pereira JA, Bento A, Baptista P (2013) Plant-mediated effects on antagonistic activity of endophytic fungi towards olive fungal diseases. In: Schneider C, Leifert C, Feldmann F (eds) Endophytes for plant protection: the state of the art, pp 127–128

    Google Scholar 

  • Mitter B, Petric A, Shin MW et al (2013) Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Front Plant Sci 4:120

    Article  PubMed  PubMed Central  Google Scholar 

  • Moyes AB, Kueppers LM, Pett-Ridge J et al (2016) Evidence for foliar endophytic nitrogen fixation in a widely distributed subalpine conifer. New Phytol 210:657–668

    Article  PubMed  CAS  Google Scholar 

  • Naveed M, Hussain MB, Zahir ZA et al (2014) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. J Plant Growth Regul 73:121–131

    Article  CAS  Google Scholar 

  • Nees von Esenbeck CG (1817) Das system der Pilze und Schwämme. Stahelschen Buchhandlung, Würzburg

    Google Scholar 

  • Nejad P, Johnson PA (2000) Endophytic bacteria induce growth promotion and wilt disease suppression in oilseed rape and tomato. Biol Control 18:208–215

    Article  Google Scholar 

  • Pal KK, Gardener BM (2006) Biological control of plant pathogens. The plant health Instructor 2:1117–1142

    Google Scholar 

  • Perrig D, Boiero ML, Masciarelli OA et al (2007) Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Appl Microbiol Biotechnol 75:1143–1150

    Article  PubMed  CAS  Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer-Verlag, New York, pp 179–197

    Chapter  Google Scholar 

  • Petrosino JF, Highlander S, Luna RA et al (2009) Metagenomic pyrosequencing and microbial identification. Clin Chem 55:856–866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Phongpaichit S, Rungjindamai N, Rukachaisirikul V, Sakayaroj J (2006) Antimicrobial activity in cultures of endophytic fungi isolated from Garcinia species. FEMS Immunol Med Microbiol 48:367–372

    Article  PubMed  CAS  Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C et al (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  PubMed  CAS  Google Scholar 

  • Pieterse CM, Zamioudis C, Berendsen RL et al (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    Article  PubMed  CAS  Google Scholar 

  • Pliego C, Kamilova F, Lugtenberg B (2011) Plant growth-promoting bacteria: fundamentals and exploitation. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystems. Springer, Berlin, pp 295–343

    Chapter  Google Scholar 

  • Pozo MJ, Van Der Ent S, Van Loon LC, Pieterse CM (2008) Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana. New Phytol 180:511–523

    Article  PubMed  CAS  Google Scholar 

  • Puri A, Padda KP, Chanway CP (2016) Evidence of nitrogen fixation and growth promotion in canola (Brassica napus L.) by an endophytic diazotroph Paenibacillus polymyxa P2b-2R. Biol Fertil Soils 52:119–125

    Article  CAS  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MN, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574

    Article  PubMed  CAS  Google Scholar 

  • Rashid S, Charles TC, Glick BR (2012) Isolation and characterization of new plant growth-promoting bacterial endophytes. Appl Soil Ecol 61:217–224

    Article  Google Scholar 

  • Reinhold-Hurek B, Maes T, Gemmer S et al (2006) An endoglucanase is involved in infection of rice roots by the not-cellulose-metabolizing endophyte Azoarcus sp. strain BH72. Mol Plant-Microbe Interact 19:181–188

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez RJ, Henson J, Van Volkenburgh E et al (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416

    Article  PubMed  Google Scholar 

  • Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  PubMed  CAS  Google Scholar 

  • Roncato-Maccari LDB, Ramos HJO, Pedrosa FO et al (2003) Endophytic Herbaspirillum seropedicae expresses nif genes in gramineous plants. FEMS Microbiol Ecol 45:39–47

    Article  PubMed  CAS  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837

    Article  PubMed  CAS  Google Scholar 

  • Ryu CM, Farag MA, CH H (2003) Bacterial volatiles promote growth of Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854

    Article  PubMed  CAS  Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340

    Article  PubMed  CAS  Google Scholar 

  • Schulz B (2006) What are endophytes? In: Schulz B, Boyle CJ, Sieber TN (eds) Microbial root endophytes, vol 9. Springer, Berlin/Heidelberg, pp 1–13

    Chapter  Google Scholar 

  • Sekhar AC, Thomas P (2015) Isolation and identification of shoot-tip associated endophytic bacteria from banana cv. Grand Naine and testing for antagonistic activity against Fusarium oxysporum f. sp. Cubense. Am J Plant Sci 6:943–954

    Article  CAS  Google Scholar 

  • Selim HMM, Gomaa NM, Essa AMM (2017) Application of endophytic bacteria for the biocontrol of Rhizoctonia solani (Cantharellales: ceratobasidiaceae) damping-off disease in cotton seedlings. Biocontrol Sci Technol 27:81–95

    Google Scholar 

  • Shahollari B, Varma A, Oelmuller R (2005) Expression of a receptor kinase in Arabidopsis roots is stimulated by the basidiomycete Piriformospora indica and the protein accumulates in triton X-100 insoluble plasma membrane microdomains. J Plant Physiol 162:945–958

    Article  PubMed  CAS  Google Scholar 

  • Shcherbakov AV, Bragina AV, Kuzmina EY et al (2013) Endophytic bacteria of sphagnum mosses as promising objects of agricultural microbiology. Microbiology 82:306–315

    Article  CAS  Google Scholar 

  • Singh RK, Mishra RPN, Jaiswal HK et al (2006) Isolation and identification of natural endophytic rhizobia from rice (Oryza sativa L.) through rDNA PCR-RFLP and sequence analysis. Curr Microbiol 52:345–349

    Article  PubMed  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Okon Y (2009) Plant growth-promoting actions of rhizobacteria. Ann Botan Res 51:283–320

    Article  CAS  Google Scholar 

  • Spoel SH, Koornneef A, Claessens SM (2003) NPR1 Modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760–770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steenhoudt O, Vandereyden J (2000) Azospirillum, free-living nitrogen fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    Article  PubMed  CAS  Google Scholar 

  • Stein E, Molitor A, Kogel KH, Waller F (2008) Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiol 49:1747–1751

    Article  PubMed  CAS  Google Scholar 

  • Stone JA, Bacon CW, White JFJ (2000) An overview of endophytic microbes: endophytism defined. In: Microbial endophytes. Dekker, New York, pp 3–30

    Google Scholar 

  • Stone JK, Polishook JD, White JRJ (2004) Endophytic fungi. In: Mueller G, Bills GF, Foster MS (eds) Biodiversity of fungi: inventory and monitoring methods. Elsevier, Burlington, pp 241–270

    Chapter  Google Scholar 

  • Strobel GA (2003) Endophytes as sources of bioactive products. Microb Infect 5:535–544

    Article  CAS  Google Scholar 

  • Sun M (2009) Molecular phylogenetic identification of endophytic fungi isolated from three Artemisia species. Fungal Divers 36:69–88

    CAS  Google Scholar 

  • Sun X, Guo LD (2012) Endophytic fungal diversity: review of traditional and molecular techniques. Mycology 1:65–76

    Google Scholar 

  • Sun L, Lu Z, Bie X et al (2006) Isolation and characterization of a co-producer of fengycins and surfactins, endophytic Bacillus amyloliquefaciens ES-2, from Scutellaria baicalensis Georgi. World J Microbiol Biotechnol 22:1259–1266

    Article  CAS  Google Scholar 

  • Taghavi S, van der Lelie D, Hoffman A et al (2010) Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLoS Genet 6:e1000943

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tan XM, Chen XM, Wang CL et al (2012) Isolation and identification of endophytic fungi in roots of nine Holcoglossum plants (Orchidaceae) collected from Yunnan, Guangxi, and Hainan provinces of China. Curr Microbiol 64:140–147

    Article  PubMed  CAS  Google Scholar 

  • Tejesvi MV, Kajula M, Mattila S, Pirttilä AM (2011) Bioactivity and genetic diversity of endophytic fungi in Rhododendron tomentosum Harmaja. Fungal Divers 47:97–107

    Article  Google Scholar 

  • Theocharis A, Bordiec S, Fernandez O (2012) Burkholderia phytofirmans PsJN primes Vitis vinifera L. and confers a better tolerance to low nonfreezing temperatures. Mol Plant-Microbe Interact 25:241–249

    Article  PubMed  CAS  Google Scholar 

  • Timmusk S, Grantcharova N, Wagner EG (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol 71:7292–7300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tripathi S, Kamal S, Sheramati I et al (2008) Mycorrhizal fungi and other root endophytes as biocontrol agents against root pathogens. Mycorrhiza 3:281–306

    Article  Google Scholar 

  • Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2:135–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Unger F (1833) Die Exantheme der Pflanzen und einige mit diesen verwandten Krankheiten der Gewächse: pathogenetisch und nosographisch dargestellt. Verlag Carl Gerold, Vienna. manusal

    Google Scholar 

  • Van Der Ent S, Verhagen BW, Van Doorn R (2008) MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis. Plant Physiol 146:1293–1304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Loon LC, Bakker P, Van der Heijdt WHW et al (2008) Early responses of tobacco suspension cells to rhizobacterial elicitors of induced systemic resistance. Mol Plant-Microbe Interact 21:1609–1621

    Article  PubMed  CAS  Google Scholar 

  • Vendan RT, YJ Y, Lee SH, Rhee YH (2010) Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. J Microbiol 48:559–565

    Article  PubMed  CAS  Google Scholar 

  • Verma VC, Gond SK, Kumar A et al (2009) Endophytic actinomycetes from Azadirachta indica A. Juss.: isolation, diversity, and anti-microbial activity. Microb Ecol 57:749–756

    Article  PubMed  Google Scholar 

  • Waghunde RR, Shelake RM, Sabalpara AN (2016) Trichoderma: a significant fungus for agriculture and environment. Afr J Agric Res 11:1952–1965

    Google Scholar 

  • Waller F, Achatz B, Baltruschat H et al (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 102:13386–13391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J, Wang G, Zhang Y et al (2014b) Isolation and identification of an endophytic fungus Pezicula sp. in Forsythia viridissima and its secondary metabolites. World J Microbiol Biotechnol 30:2639–2644

    Google Scholar 

  • Wang Y, Yang X, Zhang X et al (2014a) Improved plant growth and Zn accumulation in grains of rice (Oryza sativa L.) by inoculation of endophytic microbes isolated from a Zn hyperaccumulator, Sedum alfredii H. J Agric Food Chem 62:1783–1791

    Google Scholar 

  • Webber J (1981) A natural control of Dutch elm disease. Nature 292:449–451

    Article  Google Scholar 

  • Wei G, Kloepper JW, Tuzan S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81:1508–1512

    Article  Google Scholar 

  • Yadav V, Kumar M, Deep DK et al (2010) A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. J Biol Chem 285:26532–26344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zakhia F, Jeder H, Willems A et al (2006) Diverse bacteria associated with root nodules of spontaneous legumes in Tunesia and first report for nifH-like gene within the genera Microbacterium and Starkeya. Microbial Eco 51:375–393

    Article  Google Scholar 

  • Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771

    Article  PubMed  CAS  Google Scholar 

  • Zhang YF, He LY, Chen ZJ et al (2011) Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere 83:57–62

    Article  PubMed  CAS  Google Scholar 

  • Zhang WH, Chen W, He LY et al (2015) Characterization of Mn-resistant endophytic bacteria from Mn-hyperaccumulator Phytolacca americana and their impact on Mn accumulation of hybrid penisetum. Ecotoxicol Environ Saf 120:369–376

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Ramdas Waghunde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Waghunde, R.R., Shelake, R.M., Shinde, M.S., Hayashi, H. (2017). Endophyte Microbes: A Weapon for Plant Health Management. In: Panpatte, D., Jhala, Y., Vyas, R., Shelat, H. (eds) Microorganisms for Green Revolution. Microorganisms for Sustainability, vol 6. Springer, Singapore. https://doi.org/10.1007/978-981-10-6241-4_16

Download citation

Publish with us

Policies and ethics