Skip to main content

Application of Bioinoculants for Seed Quality Improvement

  • Chapter
  • First Online:
Microorganisms for Green Revolution

Abstract

The need for sustainable and organic agriculture, pesticide use reduction, greenhouse effect and ozone layer depletion have led to research on using microorganisms in planting. Seeds are in the heart of crop planting. The quality of the seeds determines the quality and quantity of the harvest. Different methods have been used to sanitize seeds to make them healthy and effective to attain optimal growth and achieve high crop yield. Both physical and biological methods have been used to attain effectiveness in crop production. Some of the biological methods discussed in this chapter include the use of bioinoculants as biopesticides, bioherbicides, biofungicides, biological resistance inducers and plant strengtheners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdel-Monaim M, Abo-Elyousr K, Morsy K (2011) Effectiveness of plant extracts on suppression of damping-off and wilt diseases of lupine (Lupinus termis Forsik). Crop Prot 30:185–191

    Article  Google Scholar 

  • Abo-Elyousr KAM, Hashem M, Ali EH (2009) Integrated control of cotton root rot disease by mixing fungal biocontrol agents and resistance inducers. Crop Prot 28:295–301

    Article  CAS  Google Scholar 

  • Agriquest. Quality seed and its importance in agriculture [Online]. Available: http://agriquest.info/index.php/quality-seed-and-its-importance-in-agriculture (Accessed)

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20

    Article  Google Scholar 

  • Ahmed M, Hossain M, Hassan K, Dash CK (2013) Seed health and quality test of three rice varieties for the detection of fungi associated with seed sample. Univers J Plant Sci 1:37–42

    Google Scholar 

  • Ajilogba CF, Babalola OO (2013) Integrated management strategies for tomato Fusarium wilt. Biocontrol Sci 18:117–127

    Article  PubMed  Google Scholar 

  • Ajilogba CF, Babalola OO, Ahmad F (2013) Antagonistic effects of Bacillus species in biocontrol of tomato Fusarium wilt. Stud Ethno Med 7:205–216

    Article  Google Scholar 

  • Anandaraj B, Leema R, Delapierre A (2010) Studies on influence of bioinoculants (Pseudomonas fluorescens, Rhizobium sp., Bacillus megaterium) in green gram. J Biosci Technol 1:95–99

    Google Scholar 

  • Asaka O, Shoda M (1996) Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol 62:4081–4085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    Article  CAS  Google Scholar 

  • Bashan Y, De-Bashan LE (2010) Chapter two – how the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. In: Donald LS (ed) Advances in agronomy. Academic Press, New York

    Google Scholar 

  • Basra S, Iftikhar M, Afzal I (2011) Potential of Moringa (Moringa oleifera) leaf extract as priming agent for hybrid maize seeds. Seeds 13:1006–1010

    CAS  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Bewley JD, Black M (2012) Physiology and biochemistry of seeds in relation to germination: volume 2: viability, dormancy, and environmental control. Springer Science & Business Media, Berlin

    Google Scholar 

  • Boyetchko SM, Peng G (2004) Challenges and strategies for development of mycoherbicides. In: Arora DK (ed) Fungal biotechnology in agricultural, food, and environmental applications. Marcel Dekker, New York

    Google Scholar 

  • Brick MA (2014) Improve yield with high quality seed. In: University, C. S (ed) Colorado State University extension. Colorado State University, Fort Collins

    Google Scholar 

  • Burketova L, Trda L, Ott PG, Valentova O (2015) Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnol Adv 33:994–1004

    Article  CAS  PubMed  Google Scholar 

  • Callan NW, Mathre DE, Miller JB (1991) Field performance of sweet corn seed bio-primed and coated with Pseudomonas fluorescens AB254. Hort Science 26:1163–1165

    Google Scholar 

  • Charudattan R (1991) The mycoherbicide approach with plant pathogens. In: Tebeest DO (ed) Microbial control of weeds. Chapman and Hall, New York

    Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dellavalle PD, Cabrera A, Alem D, Larrañaga P, Ferreira F, Dalla Rizza M (2011) Antifungal activity of medicinal plant extracts against phytopathogenic fungus Alternaria spp. Chilean J Agric Res 71:231

    Article  Google Scholar 

  • Dinesh R, Anandaraj M, Kumar A, Bini YK, Subila KP, Aravind R (2015) Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger. Microbiol Res 173:34–43

    Article  PubMed  Google Scholar 

  • Finch-Savage WE (1994) Influence of seed quality on crop establishment, growth and yield. In: Basra AS (ed) Seed quality: basic mechanisms and agricultural implications. Food Products Press, New York

    Google Scholar 

  • Francis R, Keinath A. (2010) Biofungicides and chemicals for managing diseases in organic vegetable production Information leaflet 88 [Online]

    Google Scholar 

  • Francisco FG, Usberti R (2008) Seed health of common bean stored at constant moisture and temperature. Sci Agric (Piracicaba, Braz) 65:613–619

    Article  Google Scholar 

  • Gerhardson B (2002) Biological substitutes for pesticides. Trends Biotechnol 20:338–343

    Article  CAS  PubMed  Google Scholar 

  • Gholami M, Khakvar R, Niknam G (2014) Introduction of some new endophytic bacteria from Bacillus and Streptomyces genera as successful biocontrol agents against Sclerotium rolfsii. Arch Phytopathol Plant Protect 47:122–130

    Article  Google Scholar 

  • Gunnell D, Eddleston M, Phillips MR, Konradsen F (2007) The global distribution of fatal pesticide self-poisoning: Systematic review. BMC Public Health 7(1)

    Article  Google Scholar 

  • Haichar FEZ, Santaella C, Heulin T, Achouak W (2014) Root exudates mediated interactions belowground. Soil Biol Biochem 77:69–80

    Article  CAS  Google Scholar 

  • Hallauer AR, Carena MJ, Miranda Filho JD (2010) Quantitative genetics in maize breeding. Springer Science & Business Media, New York

    Google Scholar 

  • Halmer P (2000) Commercial seed treatment technology Seed Technology and Its Biological Basis. Sheffield Academic Press, Sheffield, pp 257–286

    Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species--opportunistic, avirulent plant symbionts. Nature Rev Microbiol 2:43

    Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Herrmann L, Lesueur D (2013) Challenges of formulation and quality of biofertilizers for successful inoculation. Appl Microbiol Biotechnol 97:8859–8873

    Article  CAS  PubMed  Google Scholar 

  • IIRR (1996) Environmentally sound technologies for women in agriculture. IRR, New Delhi

    Google Scholar 

  • Insam H, Gómez-Brandón M, Ascher J (2015) Manure-based biogas fermentation residues–friend or foe of soil fertility? Soil Biol Biochem 84:1–14

    Article  CAS  Google Scholar 

  • IRRI (2009) Rice ecosystems. http://www.ppi-ppic.org/ppiweb/filelib.nsf/0/6191D544DF714DEF48257074002E78E6/$file/Rice%20HB%20p2-5.pdf

  • Jacobsen BJ, Zidack NK, Larson BJ (2004) The role of Bacillus-based biological control agents in integrated pest management systems: plant diseases. In: Symposium- The nature and application of biocontrol microbes: Bacillus sp. Phytopathology 94: 1272–1275

    Google Scholar 

  • Joolka NK, Singh RR, Sharma MM (2004) Influence of biofertilizers, GA3 and their combinations on growth of pecan seedlings. Ind J Hort 61:226–228

    Google Scholar 

  • Kamilova F, Kravchenko LV, Shaposhnikov AI, Makarova N, Lugtenberg B (2006) Effects of the tomato pathogen Fusarium oxysporum f. sp. radicis-lycopersici and of the biocontrol bacterium Pseudomonas fluorescens WCS365 on the composition of organic acids and sugars in tomato root exudate. Mol Plant-Microbe Interact 19:1121–1126

    Article  CAS  PubMed  Google Scholar 

  • Karthika C, Vanangamudi K (2013) Biopriming of maize hybrid COH (M) 5 seed with liquid biofertilizers for enhanced germination and vigour. Afr J Agric 8:3310–3317

    Google Scholar 

  • Kumar A, Singh M, Singh PP, Singh SK, Singh PK, Pandey KD (2016) Isolation of plant growth promoting rhizobacteria and their impact on growth and curcumin content in Curcuma longa L. Biocatal Agric Biotechnol 8:1–7

    Google Scholar 

  • Lau JA, Lennon JT (2011) Evolutionary ecology of plant-microbe interactions: soil microbial structure alters selection on plant traits. New Phytol 192:215–224

    Article  PubMed  Google Scholar 

  • Leach AW, Mumford JD (2008) Pesticide Environmental Accounting: A method for assessing the external costs of individual pesticide applications. Environ Pollut 151(1):139–147

    Google Scholar 

  • Long SR (2001) Genes and signals in Rhizobium–legume symbiosis. Plant Physiol 125:69–72

    Google Scholar 

  • Loper JE, Kobayashi DY, Paulsen IT (2007) The Genomic Sequence of Pseudomonas fluorescens Pf-5: Insights Into Biological Control. Phytopathology 97(2):233–238

    Google Scholar 

  • Mathre DE (1995) Combined Biological and Chemical Seed Treatments for Control of Two Seedling Diseases of Sweet Corn. Plant Dis 79(11):1145

    Google Scholar 

  • Mbora A, Schmidt L, Angaine P, Meso M, Omondi W, Ahenda J, Barnekov Lilleso JP Mwanza J, Mutua WR, Mutua NA, and Jamnadass R (2009). Tree Seed Quality Guide. Available on line at http://www.worldagroforestry.org

  • Mkandawire CH (2007) Review of bambara groundnut (Vigna subterranea (L.) Verdc.) production in Sub-Sahara Africa. Agric J 2:464–470

    Google Scholar 

  • Mordor Intelligence LLP (2014) Asia Pacific Biological Seed Treatment Market 2014–2019. In: Market Shares, Forecasts and Trends. Modorintelligence.com

    Google Scholar 

  • Müller H, Berg G (2008) Impact of formulation procedures on the effect of the biocontrol agent Serratia plymuthica HRO-C48 on Verticillium wilt in oilseed rape. BioControl 53:905–916

    Article  Google Scholar 

  • Muraleedharan H, Seshadri S, Perumal K (2010) Biofertilizer (Phosphobacteria). Shri AMM Murugappa Chettiar Research Centre, Taramani

    Google Scholar 

  • Muthukumar A, Eswaran A, Nakkeeran S, Sangeetha G (2010) Efficacy of plant extracts and biocontrol agents against Pythium aphanidermatum inciting chilli damping-off. Crop Prot 29:1483–1488

    Article  Google Scholar 

  • Nanduri KR, Dakheel AJ (2015) Manual of seed production of salt tolerant crops. International Center for Biosaline Agriculture, Dubai

    Google Scholar 

  • Nashwa S, Abo-Elyousr KA (2012) Evaluation of various plant extracts against the early blight disease of tomato plants under greenhouse and field conditions. Plant Prot Sci 48:74–79

    Google Scholar 

  • New Ag International (2015) Biocontrol in Asia: Gaining momentum! Seed treatments with biologicals: a new and promising frontier. http://dunhamtrimmer.com/wp-content/uploads/2012/07/Biocontrol-in-Asia-Gaining-Momentum.pdf

  • Nguyen VN (2001) Rice Production, Consumption and Nutrition. FAO, Rome

    Google Scholar 

  • O’callaghan M (2016) Microbial inoculation of seed for improved crop performance: issues and opportunities. Appl Microbiol Biotechnol 100:5729–5746

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan B, Bai YM, Leibovitch S, Smith DL (1999) Plant-growth-promoting rhizobacteria and kinetin as ways to promote corn growth and yield in a shortgrowing-season area. Eur J Agron 11:179–186

    Google Scholar 

  • Pathak DV, Singh S, Saini RS (2013) Impact of bio-inoculants on seed germination and plant growth of guava (Psidium guajava). Glob J Wood Sci For Wildl 1:15–17

    Google Scholar 

  • Pava-Ripoll M, Angelini C, Fang W, Wang S, Posada FJ, St Leger R (2011) The rhizosphere-competent entomopathogen Metarhizium anisopliae expresses a specific subset of genes in plant root exudate. Microbiology 157:47–55

    Article  CAS  PubMed  Google Scholar 

  • Pilz C, Enkerli J, Wegensteiner R, Keller S (2011) Establishment and persistence of the entomopathogenic fungus Metarhizium anisopliae in maize fields. J Appl Entomol 135:393–403

    Article  Google Scholar 

  • Poopathi S, Abidha S (2009) A medium for the production of biopesticides (Bacillus sphaericus and Bacillus thuringiensis subsp. israelensis) in mosquito control. J Econ Entomol 102:1423–1430

    Article  CAS  PubMed  Google Scholar 

  • Powell AA (1998) Seed improvement by selection and invigoration. Sci Agric 55:126–133

    Article  Google Scholar 

  • Powell AA, Thornton JM, Matthews S, Yule L (1993) Invigoration of oilseed rape (Brassica napus) by aerated hydration. Seed Res Special volume:728–733

    Google Scholar 

  • Raja P, Uma S, Gopal H, Govindarajan K (2006) Impact of bioinoculants consortium on rice root: biological nitrogen fixation and plant growth. J Biol Sci 6:815–823

    Article  Google Scholar 

  • Reddy PP (2012) Bio-priming of seeds. In: Recent advances in crop protection. Springer, pp 83–90

    Google Scholar 

  • Rickman JF, Bell M, and Shires D (2006). Seed Quality. Available at http://www.knowledgebank.irri.org

  • Rivera-Cruz MDC, Trujillo Narcía A, Córdova Ballona G, Kohler J, Caravaca F, Roldán A (2008) Poultry manure and banana waste are effective biofertilizer carriers for promoting plant growth and soil sustainability in banana crops. Soil Biol Biochem 40:3092–3095

    Article  CAS  Google Scholar 

  • Rodríguez-Navarro DN, Oliver M, Contreras MA, Ruiz-Sainz JE (2011) Soybean interactions with soil microbes, agronomical and molecular aspects. Agron Sustain Dev 31:173–119

    Article  Google Scholar 

  • Rowse HR (1996) Drum priming – a non-osmotic method of priming seeds. Seed Sci Technol 24:281–294

    Google Scholar 

  • Santos BM (2013) Seed quality and seeding technology. In: Olson SM, Simonne EH (eds) The vegetable production handbook for Florida. Horticultural Sciences Department, UF/IFAS Extension, Gainesville

    Google Scholar 

  • Schröder R, Prasse R (2013) From nursery into nature: a study on performance of cultivated varieties of native plants used in re-vegetation, their wild relatives and evolving wild× cultivar hybrids. Ecol Eng 60:428–437

    Article  Google Scholar 

  • Shukla N, Awasthi R, Rawat L, Kumar J (2015) Seed biopriming with drought tolerant isolates of Trichoderma harzianum promote growth and drought tolerance in Triticum aestivum. Ann Appl Biol 166:171–182

    Google Scholar 

  • Srivastava V, Chauhan PS, Misra S (2016) Bioprospecting for improving soil health and crop productivity: Indian patent landscape. Intellect Prop Issues Biotechnol 58

    Google Scholar 

  • Taylor AG, Klien DE, Whitlow TH (1988) SMP: solid matrix priming of seeds. Sci Hortic 37:1–11

    Article  Google Scholar 

  • Thomas C (2009) Managing plant diseases with biofungicides. In: Agriculture, P. D. O (ed) Integrated Pest management program. Pennsylvania Department of Agriculture, Harrisburg

    Google Scholar 

  • Thornton JM, Powell AA (1992) Short term aerated hydration for the improvement of seed quality in Brassica oleracea L. Seed Sci Res 2:41–49

    Article  Google Scholar 

  • Trujillo EE (2005) History and success of plant pathogens for biological control of introduced weeds in Hawaii. Biol Control 33:113–122

    Article  Google Scholar 

  • Ur Rehman H, Nawaz Q, Basra SMA, Afzal I, Yasmeen A (2014) Seed priming influence on early crop growth, phenological development and yield performance of linola (Linum usitatissimum L.) J Integr Agric 13:990–996

    Article  CAS  Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud M-L, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C (2013) Plant growth promoting rhizobacteria and root system functioning. Front Plant Sci 4:356

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Der Ent S, Van Wees SCM, Pieterse CMJ (2009) Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry 70:1581–1588

    Article  CAS  PubMed  Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  Google Scholar 

  • Van Pijlin JG, Groot SPC, Kraak HL, Bergervoet JHW (1995) Effects of pre-storage hydration on germination performance, moisture content, DNA synthesis and controlled deterioration of tomato (Lycopersicon esculentum Mill.) seeds. Seed Sci Res 6:57–63

    Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Li H, Woo SL, Lorito M (2008) A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol 72(1–3):80–86

    Google Scholar 

  • Warren JE, Bennett MA (1997) Seed hydration using the drum priming system. Hort Science 32:1220–1221

    Google Scholar 

  • Yang J, Kloepper JW, Ryu C-M (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

  • Zaidi A, Ahmad E, Khan MS, Saif S, Rizvi A (2015) Role of plant growth promoting rhizobacteria in sustainable production of vegetables: current perspective. Sci Hortic 193:231–239

    Article  Google Scholar 

  • Zodape S, Mukhopadhyay S, Eswaran K, Reddy M, Chikara J (2010) Enhanced yield and nutritional quality in green gram (Phaseolus radiatus L) treated with seaweed (Kappaphycus alvarezii) extract. J Sci Ind Res 69:468–471

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olubukola Oluranti Babalola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ajilogba, C.F., Olanrewaju, O.S., Babalola, O.O. (2017). Application of Bioinoculants for Seed Quality Improvement. In: Panpatte, D., Jhala, Y., Vyas, R., Shelat, H. (eds) Microorganisms for Green Revolution. Microorganisms for Sustainability, vol 6. Springer, Singapore. https://doi.org/10.1007/978-981-10-6241-4_14

Download citation

Publish with us

Policies and ethics