Skip to main content

Enzyme: A Bio Catalyst for Cleaning up Textile and Apparel Sector

  • Chapter
  • First Online:
Detox Fashion

Part of the book series: Textile Science and Clothing Technology ((TSCT))

Abstract

The textile and apparel sector provides employment to huge population across the world and plays a major role in global economy. Although, various toxic chemicals start from fiber cultivation/production to apparel production are used in it. Therefore, there is dire need to replace these toxic chemicals with appropriate eco-friendly sustainable alternatives. Enzymes have great potential to detoxify the whole supply chain by replacing various harmful chemicals being used in textile and apparel sector especially in wet processing. Enzymes are biocatalyst and life cannot be thought of without them. Infact, enzymes are precious gift of nature for sustainability. Detox fashion cannot be thought of without considering the enzymes as they not only substitute various toxic chemicals but themselves are biodegradable, sustainable and work at low energy. Amylase, pectinase, lipase, catalase, cellulase, hemicellulase, protease, laccase, sericinase, etc are extensively used enzymes in textile and apparel wet processing. The foregoing chapter discusses detox fashion via applications of these enzymes in sustainable wet processing of cotton, regenerated cellulosic, bast, wool, silk, etc textile materials. Enzyme also has great potential in production and modification of manmade fiber along with waste water treatment, decolorisation, soil remediation and detoxification. Further the impact of biotechnological advancements in enzymatic application in textiles has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal PB (2005) The performance of cutinase and pectinase in cotton scouring. Dissertation, University of Twente, the Netherlands, Wohrmann Print Service, the Netherlands

    Google Scholar 

  • Ahlawat S, Dhiman SS, Battan B, Mandhan RP, Sharma (2009) J Pectinase production by Bacillus subtilis and its potential application in biopreparation of cotton and micropoly fabric. Process Biochem 44(5):521–526

    Google Scholar 

  • Ajgaonkar DB, Talukdar MK, Wadewkar VR (1982) Sizing materials and methods machines. Textile Trade Press, Ahmedabad, p 5

    Google Scholar 

  • Akin DE, Rigsby LL, Perkins W (1999) Quality properties of flax fibres retted with enzymes. Text Res J 69(10):747–753

    Article  CAS  Google Scholar 

  • Akin DE, Dodd RB, Perkins W, Henriksson G, Eriksson KEL (2000) Spray enzymatic retting: a new method for processing flax fibres. Text Res J 70(6):486–494

    Article  CAS  Google Scholar 

  • Alinsafi A, Khemis M, Pons MN et al (2005) Electro-coagulation of reactive textile dyes and textile wastewater. Chem Eng Process; Proc Intens 44:461–470

    Google Scholar 

  • Araujo R, Casal M, Cavaco-Paulo A (2008) Application of enzymes for textile fibres processing. Biocatal Biotransform 6(5):332–349

    Article  Google Scholar 

  • Bahi A, Jones JT, Carr CM, Ulijn RV, Shao J (2007) Surface characterization of chemically modified wool. Text Res J 77(12):937–945. doi:10.1177/0040517507083520

    Article  CAS  Google Scholar 

  • Banci L, Ciofi-Baffoni S, Tien M (1999) Lignin and Mn peroxidase-catalyzed oxidation of phenolic lignin oligomers. Biochemistry 38:3205–3210

    Article  CAS  Google Scholar 

  • Batra SH (1985) Other long vegetable fibers: abaca, banana, sisal, henequen, flax, ramie, hemp, sunn, and coir. In: lewin M, Pearce EM (ed) Handbook of fiber science and technology. Fiber chemistry, vol 4. Marcel Dekker, New York

    Google Scholar 

  • Bernath FR, Vieth WR (1974) Immobilized enzyme in food and microbial processes. Plenum Press, New York

    Google Scholar 

  • Bhavan S, Rao JR, Nair BU (2008) A potential new commercial method for processing leather to reduce environmental impact. Environ Sci Pollut Res 15(4):293–295

    Article  Google Scholar 

  • Bizuneh A (2012) Textile effluent treatment and decolorization techniques—a review. Chem: Bul J Sci Educ 21(3):434–436

    Google Scholar 

  • Boyer PD (ed) (1959) Handbook of enzymes, vol I. Acad. Press, New York

    Google Scholar 

  • Brühlmann F, Kim KS, Zimmerman W, Fiechter A (1994) Pectinolytic enzymes from actinomycetes for the degumming of ramie bast fibers. Appl Environ Microbiol 60(6):2107–2112

    Google Scholar 

  • Brühlmann F, Leupin M, Erismann KH, Fiechter A (2000) Enzymatic degumming of ramie bast fibers. J Biotechnol 76:43–50

    Google Scholar 

  • Buchert J, Pere J, Puolakka A, Nousiainen P (2000) Scouring of cotton with pectinases, proteases and lipases. Text Chem Color Am Dyest Rep 32(5):48–52

    CAS  Google Scholar 

  • Campos R, Kandelbauer A, Robra KH, Cavaco-Paulo A, Gübitz GM (2001) Indigo degradation with purified laccases from Trametes hirsute and Sclerotium rolfsii. J Biotechnol 89:131–139

    Article  CAS  Google Scholar 

  • Cardamone JM (2007) Enzyme-mediated cross linking of wool. Part: Transglutaminase. Text Res J 77(4):214–221

    Article  CAS  Google Scholar 

  • Cavaco-Paula A, Almeida A (1996) Kinetic parameters measured during cellulase processing of cotton. J Text Inst 87:227–233

    Article  Google Scholar 

  • Cavaco-Paulo A, Gübitz G (2003) Catalysis and processing. In: Cavaco-Paulo A, Gubitz G (eds) Textile processing with enzymes, 1st edn. Woodhead Publishing Limited, Cambridge, pp 86–119

    Chapter  Google Scholar 

  • Cavaco-Paulo A, Morgado J, Almeida L, Kilburn D (1998) Indigo backstaining during cellulase washing. Text Res J 68(6):398–401

    Article  CAS  Google Scholar 

  • Ceria A, Rovero G, Sicardi S, Ferrero F (2010) Atmospheric continuous cold plasma treatment: thermal and hydrodynamical diagnostics of a plasma jet pilot unit. Chem Eng Process 49(1):65–69. doi:10.1016/j.cep.2009.11.008

    Article  CAS  Google Scholar 

  • Chakraborty JN, Jaruhar P (2014) Dyeing of cotton with sulphur dyes using alkaline catalase as reduction catalyst. Indian J Fibre Text Res 39:303–309

    CAS  Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59(3):527–605

    CAS  Google Scholar 

  • Chesson A (1980) Maceration in relation to the post handling and processing of plant material. J Appl Biotechnol 48:1–45

    CAS  Google Scholar 

  • Chiba S (1997) Molecular mechanism in (X-glucosidase and glucoamylase). Biosci Biotech Bioc/zell 61(8):1233–1239

    Article  CAS  Google Scholar 

  • Claus H (2003) Laccases and their occurrence in prokaryotes. Arch Microbiol 179:145–150

    Article  CAS  Google Scholar 

  • Conn EE, Stumpf PK, Bruening G, Doi RH (1987) Outlines of biochemistry, 5th edn. Wiley, Singapore, pp 115–164

    Google Scholar 

  • Cortez J, Bonner PLR, Griffin M (2004) Application of transglutaminases in the modification of wool textiles. Enzyme Microb Technol 34:64–72

    Article  CAS  Google Scholar 

  • Couto SR, Toca-Herrera JL (2006) Lacasses in the textile industry. Biotechnol Mol Biol Rev 1(4):115–120

    Google Scholar 

  • Crueger W, Crueger A (2000) Biotechnology: a textbook of industrial microbiology, 2nd edn. Panima Publishing Corp., New Delhi, p 189

    Google Scholar 

  • Damsus T, Kirk O, Pedersen G, Venegas MG (1991) Novo Nordisk A/S, The Procter & Gamble Company, Patent O9105839

    Google Scholar 

  • Das Gupta PC, Sen K, Sen SK (1976) Degumming of decorticated ramie for textile purposes. Cell Chem Technol 10:285–291

    CAS  Google Scholar 

  • De Souza FR, Gutterres M (2012) Application of enzymes in leather processing: a comparison between chemical and coenzymatic processes. Braz J Chem Eng 29(3):473–481

    Article  Google Scholar 

  • Dhillon A, Gupta JK, Jauhari BM, Khanna S (2000) A cellulasepoor, thermostable, alkalitolerante xylanase produced by Bacillus circulans AB 16 grown on rice straw and its application in biobleaching of eucalyptus pulp. Biores Technol 73:273–277

    Article  CAS  Google Scholar 

  • Drauz K, Waldmann H (1994) Enzyme catalysis in organic synthesis: a comprehensive handbook. VSH, Weinheinm

    Google Scholar 

  • Eggert C, Temp U, Dean JFD, Eriksson KEL (1996) A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett 391:144–148

    Article  CAS  Google Scholar 

  • Etters JN (1995) Advances in indigo dyeing: implication for the dyer, apparel manufacturer and environment. Text Chem Color 27(2):17–22

    CAS  Google Scholar 

  • Feitkenhauer H, Fischer D, Fah D (2003) Microbial desizing using starch as model compound: enzyme properties and desizing efficiency. Biotechnol Prog 19:874–879

    Article  CAS  Google Scholar 

  • Freddi G, Mossotti R, Innocenti R (2003) Degumming of silk fabric with several proteases. J Biotechnol 106:101–112

    Article  CAS  Google Scholar 

  • Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177(2):751–766

    CAS  Google Scholar 

  • Gulrajani ML, Agarwal R, Chand S (2000a) Degumming of silk with fungal protease. Indian J Fibre Text Res 25:138–142

    CAS  Google Scholar 

  • Gulrajani ML, Agarwal R, Grover A, Suri M (2000b) Degumming of silk with lipase and protease. Indian J Fibre Text Res 25:69–74

    CAS  Google Scholar 

  • Hartzell MM, Hsieh YL (1998) Enzymatic scouring to improve cotton fabric wettability. Text Res J 68(4):233–241

    Article  CAS  Google Scholar 

  • Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Technol 39(2):235–251

    Article  CAS  Google Scholar 

  • Hasan F, Shah AA, Javed S, Hameed A (2010) Enzymes used in detergents: lipases. Afr J Biotech 9(31):4836–4844

    CAS  Google Scholar 

  • Hedin PA, Jenkis JN, Parrot WL (1992) Evaluation of flavonoids in Gossypium arboretum (L.) cottons as potential source of resistance to tobacco budworm. J Chem Ecol 18:105–114

    Article  CAS  Google Scholar 

  • Heine E, Ruers A, Hocker H (2000) Enzymatic degradation of vegetable residues in wool. DWI Rep 123:475–479

    CAS  Google Scholar 

  • Herbots I, Kottwitz B, Reilly PJ et al (2008) Enzymes, non-food application. Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Hickman WS (1995) Preparation; cellulosic dyeing. In: Shore J (ed) Society of dyers and colourists. The Alden Press, Oxford

    Google Scholar 

  • Ibrahim NA, El-Hossamy M, Morsy MS, Eid BM (2004) Development of new eco-friendly options for cotton wet processing. J Appl Polym Sci 93:1825–1836

    Article  CAS  Google Scholar 

  • Industrial Enzymes Market by Type (Amylases, Cellulases, Proteases, Lipases, and Phytases), Application (Food & Beverages, Cleaning Agents, and Animal Feed), Source (Microorganism, Plant, and Animal), and Region—Global Forecast to 2022 (2016) http://www.marketsandmarkets.com/Market-Reports/industrial-enzymes-market-237327836.html. Accessed 15 Mar 2017

  • Jajpura L (2014) Decolourisation of textile effluent by laccase—a review. In: Proceeding of International conference—emerging trends in traditional and technical textiles (ICETT), Department of Textile Technology, NIT Jalandhar, 11–12 April 2014

    Google Scholar 

  • Jajpura L (2015) Sustainable fibre production and textile wet processing for better tomorrow. In: Asian textile conference (ATC-13), 2015 at Deakin University, Wauran Ponds 3216, Geelong, Victoria Australia from 3–6 Nov 2015

    Google Scholar 

  • Jajpura L, Singh B (2015) Impact of agricultural technologies employed for food and textile fibres production on environment and human health. Environ We Int J Sci Technol 10:101–116

    Google Scholar 

  • Jajpura L, Khandual A, Pai RS (2004) Effluent treatment in textile industries. Text Mag 4(45):34–40

    Google Scholar 

  • Jenkins RO (2003) Enzymes. In: Cavaco-Paulo A, Gubitz G (eds) Textile processing with enzymes, 1st edn. Woodhead Publishing Limited, Cambridge, pp 1–41

    Chapter  Google Scholar 

  • Karapinar E, Sariisik MO (2004) Scouring of cotton with cellulases, pectinases and proteases. Fibres Text East Eur 12:79–82

    CAS  Google Scholar 

  • Khandual A, Jajpura L, Pai RS (2004) Sizing processes and its application. Colourage 51(11):33–40

    CAS  Google Scholar 

  • Kumar A, Mee-Young Y, Purtell C (1997) Optimizing the use of cellulase enzymes in finishing cellulosic fabrics. Text Chem Color 29(4):37–42

    CAS  Google Scholar 

  • Lantto R, Schänberg C, Buchert J (2004) Effects of laccase-mediator combination on wool. Text Res J 74:713–717

    Article  CAS  Google Scholar 

  • Lenting HBM, Warmoeskerken M (2001) Mechanism of interaction between cellulase action and applied shear force, an hypothesis. J Biotechnol 89(2–3):217–226

    Article  CAS  Google Scholar 

  • Li Y, Hardin IR (1998) Enzymatic scouring of cotton-surfactants, agitation and selection of enzymes. Text Chem Color 30:23–29

    CAS  Google Scholar 

  • Li S, Yang X, Yang S, Zhu M, Wang X (2012) Technology prospecting on enzymes: application, marketing and engineering. Comput Struct Biotechnol J 2(3). http://dx.doi.org/10.5936/csbj.201209017

  • Liu W, Chao Y, Yang X, Buo H, Qian S (2004) Biodecolorization of azo, anthraquinonic and triphenylmethane dyes by white-rot fungi and a laccase-secreting engineered strain. J Ind Microbiol Biotechnol 31:127–132

    Article  CAS  Google Scholar 

  • Maehly AC, Chance B (1954) The assay of catalase peroxidase. In: Glick D (ed) Methods of biochemical analysis, vol 1. Interscience Publishers Inc., New York, p 357

    Chapter  Google Scholar 

  • Mather RR, Wardman RH (2011) The chemistry of textile fibres. RSC Publishing, Cambridge

    Google Scholar 

  • McNeil M, Darvill AG, Fry SC, Albertsheim P (1984) Structure and function of the primary cell walls of plants. Ann Rev Biochem 53:625–663

    Article  CAS  Google Scholar 

  • Messing RA (1975) Immobilized enzyme for industrial research. Acad Press, New York

    Google Scholar 

  • Metzler DE (2001) Biochemistry the chemical reactions of living cells, vol I. Harcourt Academic Press, San Diego, pp 459–466

    Google Scholar 

  • Michael S, William PG (1997) The mechanism of hydrogen peroxide bleaching. Text Chem Color 29:11

    Google Scholar 

  • Michaelis L, Menten ML (1913) Die Kinetik der Invertinwirkung. Biochemische Zeitschrift 49:333–369

    CAS  Google Scholar 

  • Mohanty AK, Manjusri M, Drzal LT (2005) Natural fibres, biopolymers and biocomposites. CRC Press, Taylor & Francis Group, Boca Raton

    Book  Google Scholar 

  • Mojsov K (2011) Application of enzymes in the textile industry: a review. In: 2nd International Congress “Engineering, Ecology and Materials in the Processing Industry” Jahorina, 9–11 March 2011, pp 231–239

    Google Scholar 

  • Mojsov K (2012) Enzyme scouring of cotton fabrics: a review. Int J Mark Technol 2(9):256–275

    Google Scholar 

  • Morgado J, Cavaco-Paulo A, Rousselle M (2000) Enzymatic treatment of lyocell-clarification of depilling mechanisms. Text Res J 70(8):696–699

    Article  CAS  Google Scholar 

  • Morton WE, Hearle JWS (1993) Physical properties of textile fibres, 3rd edn. Textile Institute, Manchester

    Google Scholar 

  • Mousa AHN (1976) Optimisation of rope-range bleaching of cellulostic fabrics. Text Res J 46:493–496

    Article  CAS  Google Scholar 

  • Nielsen PH, Kuilderd H, Zhou W, Lu X (2009) Enzyme biotechnology for sustainable textiles. In: Blackburn RS (ed) sustainable textiles. Woodhead Publishing, Cambridge, pp 113–138

    Chapter  Google Scholar 

  • Nomenclature Committee of The International Union of Biochemisty and Molecular Biology (NC-IUBMB) (1992) Enzyme nomenclature. Academic Press, San Diego

    Google Scholar 

  • Othmer K (1980) Encyclopedia of chemical technology, vol 9. p 138

    Google Scholar 

  • Palmer T (1981) Understanding enzymes. Ellis Horwood Ltd., New York, p 17

    Google Scholar 

  • Pedersen AH, Schneider PNN (1998) US Pat. 5795855 A. US-Patent, 1998

    Google Scholar 

  • Pereira L, Bastos C, Tzanov T, Cavaco-Paulo A, Gübitz GM (2005) Environmentally friendly bleaching of cotton using laccases. Environ Chem Lett 3(2):66–69

    Article  CAS  Google Scholar 

  • Peters RH (1967) Textile chemistry, vol II. Elsevier Publishing Company, London, p 150

    Google Scholar 

  • Rajamani S, Chen Z, Zhang S, Su C (2009) Recent developments in cleaner production and environment protection in world leather sector. In: 30th IULTCS Congress 2009, Beijing, China, p 5

    Google Scholar 

  • Ramachandran P, Sundharam R, Palaniyappan J, Munusamy AP (2013) Potential process implicated in bioremediation of textile effluents: a review. Pelagia Res Libr, Adv Appl Sci Res 4(1):131–145

    CAS  Google Scholar 

  • Rangi A, Jajpura L (2015) The biopolymer sericin: extraction and applications. J Text Sci Eng 5(1):1–5

    Google Scholar 

  • Rau M, Heidemann C, Pascoalin AM et al (2008) Application of cellulases from Acrophialophora nainiana and Penicillium echinulatum in textile processing of cellulosic fibers. Biocatal Biotransform 26(5):383–390

    Article  CAS  Google Scholar 

  • Richardson S, Gorton L (2002) Characterisation of the substituent distribution in starch and cellulose derivatives. Analytica Chimica Acta 497:27–65

    Google Scholar 

  • Rinsey JVA, Karpagam CS (2012) Degumming of silk using protease enzyme from bacillus species. Int J Sci Nat 3(1):51–59

    Google Scholar 

  • Rodwell VW, Kennelly PJ (1999) Enzymes kinetics. In: Harper’s biochemistry, A lange medical book, 25th edn. Appleton & lange, Stamford, pp 86–102

    Google Scholar 

  • Rott U, Minke R (1999) Overview of wastewater treatment and recycling in the textile processing industry. Water Sci Technol 40:37–144

    Article  Google Scholar 

  • Sakai T, Sakamoto T, Hallaert J, Vandamme EJ (1993) Pectin, pectinase and protopectinase: production, proterties and applications. Adv Appl Microbiol 39:213–294

    Article  CAS  Google Scholar 

  • Sangwatanaroj U, Choonukulpong K (2003) Cotton scouring with pectinase and lipase/protease/cellulase. AATCC Rev 3:17–20

    CAS  Google Scholar 

  • Sarkar AK, Etters JN (1999) International Conference and Exhibition, AATCC, 12–15 Oct 1999, p 274

    Google Scholar 

  • Schimper CB, Constanta I, Bechtold T (2009) Effect of alkali pre-treatment on hydrolysis of regenerated cellulose fibers by cellulases (part 1: viscose). Cellulose 16(6):1057–1068. doi:10.1007/s10570-009-9345-6

    Article  CAS  Google Scholar 

  • Setti L, Giuliani S, Spinozzi G, Pifferi PG (1999) Laccase catalyzedoxidative coupling of 3-methyl 2-benzothiazolinone hydrazone and methoxyphenols. Enzyme Microb Technol 25:285–289

    Article  CAS  Google Scholar 

  • Shao J, Hawkyard CJ, Carr CM (1997) Investigation into the effect of UV/ozone treatments on the dyeability and printability of wool. J Soc Dyers Colour 113(4):126–130. doi:10.1111/j.1478-4408.1997.tb01884.x

    Article  CAS  Google Scholar 

  • Shenai VA (1991) Technology of bleaching and mercerisation, 2nd edn. Mumbai, Sevak Pub., p 37

    Google Scholar 

  • Shin HS, Guebitz G, Cavaco-Paulo A (2001) In situ enzymatically prepared polymers for wool coloration. Macromol Mater Eng 286:691–694

    Article  CAS  Google Scholar 

  • Shukla SR, Jajpura L (2004) Estimating amylase activity for desizing by DNSA. Text Asia, 15–20

    Google Scholar 

  • Shukla SR, Jajpura L (2005) Immobilisation of amylase by various techniques. Indian J Fibres Text Res 3(29):75–81

    Google Scholar 

  • Shukla SR, Maheshwari KC (2002) Use of standing bath technique in peroxide bleaching of cotton. Color Technol 118(2):75–78

    Article  CAS  Google Scholar 

  • Shukla SR, Jajpura L, Damle AJ (2003) Enzyme: the biocatalyst for textile processes. Colourage, Special issue on TEXTINDIA FAIR Club Melange, 7–9 Nov 2003, pp 41–47

    Google Scholar 

  • Silva CM, Carneiro F, O’Neill A, et al (2005) Cutinase—a new tool for biomodification of synthetic fibers. J Polym Sci Part A: Polym Chem 43:2448–2450

    Google Scholar 

  • Silva C, Araújo R, Casal M, Gubitz GM, Cavaco-Paulo A (2007) Influence of mechanical agitation on cutinases and protease activity towards polyamide substrates. Enzyme Microb Technol 40:1678–1685

    Google Scholar 

  • Singh R, Kumar M, Mittal A, Mehta PK (2016) Microbial enzymes: industrial progress in 21st century. 3 Biotech 6:174–175. doi:10.1007/s13205-016-0485-8

    Article  Google Scholar 

  • Smith JE (1996) Biotechnolgy, 3rd edn. Cambridge University Press, Cambridge, pp 68–83

    Google Scholar 

  • Snyder LG (1997) Improving the quality of 100% cotton knit fabrics by defuzzing with singeing and cellulase enzymes. Text Chem Color 29(6):27–31

    CAS  Google Scholar 

  • Sumner JB (1926) The isolation and crystallization of the enzyme urease: preliminary paper. J Biol Chem 69:435–441

    CAS  Google Scholar 

  • Suskling CJ (1984) Enzyme chemistry. Chapman and Hall, London

    Book  Google Scholar 

  • Svendsen (2000) Lipase protein engineering. Biochim Biophys Acta 1543:223–238

    Google Scholar 

  • Taylor RF (1991) Protein immobilization: fundamentals and application. Marcel Dekker, Inc., New York

    Google Scholar 

  • Torres E, Bustos-Jaimes I, Borgne SL (2003) Potential use of oxidative enzymes for the detoxification of organic pollutants. Appl Catal B: Environ 46:1–15

    Article  CAS  Google Scholar 

  • Traore MK, Buschle-Dilleer G (2000) Environmentally friendly scouring processes. Text Chem Color Am Dyest Rep 32(12):40

    Google Scholar 

  • Trotman ER (1968) Textile scouring & bleaching. Griffin Publishers, London, p 33

    Google Scholar 

  • Trotman ER (1984) Dyeing and chemical technology of textile fibers, 6th edn. Charles Griffin and Company Ltd., High Wycombe

    Google Scholar 

  • Tyndall RM (1992) Improving the softness and surface appearance of cotton fabrics and garments by treatment with cellulase enzymes. Text Chem Color 24(6):23–26

    Google Scholar 

  • Tzanov T, Basto C, Gübitz GM, Cavaco-Paulo A (2003a) Laccases to improve the whiteness in a conventional bleaching of cotton. Macromol Mater Eng 288:807–810

    Article  CAS  Google Scholar 

  • Tzanov T, Silva CJ, Zille A, Oliveira J, Cavaco-Paulo A (2003b) Effect of some process parameters in enzymatic dyeing of wool. Appl Biochem Biotech 111:1–14

    Article  CAS  Google Scholar 

  • Van Rensburg NJJ, Barkhuysen FA (1983) Continuous shrink-resist treatment of wool tops using chlorine gas in a conventional suction-drum backwash. SAWTRI Tech Rep 539:22

    Google Scholar 

  • Van Sumere C, Sharma H (1991) Analysis of fine flax fiber produced by enzymatic retting. Aspect Appl Biol 28:15–20

    Google Scholar 

  • Varanasi A, Obendorf SK, Pedersen LS, Mejldal R (1997) Lipid distribution on textiles in relation to washing with lipases. J Surfactants Deterg 4:135–146

    Article  Google Scholar 

  • Walker GM, Weatherly LR (1997) Adsorption of acid dyes onto granular activated carbon in fixed beds. J Water Res 31:2093–2101

    Article  CAS  Google Scholar 

  • Weil JH (1996) General biochemistry, 6th edn. New Age International Limited, New Delhi

    Google Scholar 

  • West ES, Todd WR (1957) Textbook of biochemistry, 2nd edn. The Macmillan Company, New York, pp 411–460

    Google Scholar 

  • Wu Z, Joo H, Ahn IS, Haam S, Kim JH, Lee K (2004) Organic dye adsorption on mesoporous hybrid gels. Chem Eng J 102:277–282

    Article  CAS  Google Scholar 

  • Xia J, Chen X, Nnanna IA (1996) Activity and stability of Penicillium cyclopium lipase in surfactant and detergent solutions. J Am Oil Chem Soc 73:115–120

    Article  CAS  Google Scholar 

  • Yoon MY, McDonald H, Chu K, Garratt C (2000) Protease, a new tool for denim washing. Text Chem Color Am Dyest Rep 32(5):25–29

    CAS  Google Scholar 

  • Yoon MY, Kellis J, Poulose AJ (2002) Enzymatic modification of polyester. AATCC Rev 2(6):33–36

    CAS  Google Scholar 

  • Zahn H (1993) Silk. Ullmann’s encyclopedia of industrial chemistry, vol A24. VCH Publisher Inc., pp 95–106

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalit Jajpura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Jajpura, L. (2018). Enzyme: A Bio Catalyst for Cleaning up Textile and Apparel Sector. In: Muthu, S. (eds) Detox Fashion. Textile Science and Clothing Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4876-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4876-0_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4875-3

  • Online ISBN: 978-981-10-4876-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics