Skip to main content

Nanoagrotechnology for Soil Quality, Crop Performance and Environmental Management

  • Chapter
  • First Online:
Book cover Nanotechnology

Abstract

Nanotechnology is emerging as the key enabling technology that contributes to increased crop production with special emphasis on soil protection with environmental sustainability. Increasing worldwide food security and challenging climatic conditions are the key components for encouraging the scientific community to focus on accelerating the growth of nanoagrotechnology. Last few decades immensely contributed to the field of agriculture; technological innovations by several hybrid varieties, synthetic chemical compounds and advanced techniques of biotechnology are an integral part of this achievement. The present decade emerged as the “decade of nanoagrotechnology”, as a new origin of agricultural developments through most groundbreaking scientific finding in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adak T, Kumar J, Dey D, Shakil NA, Walia S (2012a) Residue and bio-efficacy evaluation of controlled release formulations of imidacloprid against pests in soybean (Glycine max). J Environ Sci Health B 47(3):226–231

    Article  CAS  PubMed  Google Scholar 

  • Adak T, Kumar J, Shakil NA, Walia S (2012b) Development of controlled release formulations of imidacloprid employing novel nano-ranged amphiphilic polymers. J Environ Sci Health B 47(3):217

    Article  CAS  PubMed  Google Scholar 

  • Adhikari T, Kundu S, Biswas AK, Tarafdar JC, Rao AS (2012) Effect of copper oxide nano particle on seed germination of selected crops. J Agric Sci Technol 2:815–823

    CAS  Google Scholar 

  • Afrasiabi Z, Eivazi F, Popham H, Stanley D, Upendran A, Kannan R (2012) Silver nanoparticles as pesticides. In: Capacity building grants program project director’s meeting. National Institute of Food and Agriculture, Huntsville. September 16–19

    Google Scholar 

  • Aghdam MTB, Mohammadi H, Ghorbanpour M (2016) Effects of nanoparticulate anatase titanium dioxide on physiological and biochemical performance of Linum usitatissimum (Linaceae) under well-watered and drought stress conditions. Braz J Bot 39(1):139–146

    Article  Google Scholar 

  • Agrawal S, Rathore P (2014) Nanotechnology pros and cons to agriculture: a review. Int J Curr Microbiol App Sci 3(3):43–55

    Google Scholar 

  • Aktar MW, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2(1):1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Samarrai AM (2012) Nanoparticles as alternative to pesticides in management plant diseases – a review. Int J Sci Res Publ 2(4):1–4

    Google Scholar 

  • Arifin DY, Lee LY, Wang CH (2006) Mathematical modeling and simulation of drug release from microspheres: implications to drug delivery systems. Adv Drug Deliv Rev 58:1274–1325

    Article  CAS  PubMed  Google Scholar 

  • Asghari S, Johari SA, Lee JH, Kim YS, Jeon YB, Choi HJ, Moon MC, Yu IJ (2012) Toxicity of various silver nanoparticles compared with silver ions in Daphnia magna. J Nanobiotech 10:14. doi:10.1186/1477-3155-10-14

    Article  CAS  Google Scholar 

  • AshaRani PV, Mun GLK, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290

    Article  CAS  PubMed  Google Scholar 

  • Ashkavand P, Tabari M, Zarafshar M, Tomášková I, Struve D (2015) Nanoparticles on drought resistance in hawthorn seedlings. Leśne Pr Badawcze 76(4):350–359

    Google Scholar 

  • Azimi R, Borzelabad MJ, Feizi H, Azimi A (2014) Interaction of SiO2 nanoparticles with seed prechilling on germination and early seedling growth of tall wheat grass (Agropyron elongatum L.) Pol J Chem Technol 16:25–29

    Article  CAS  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. doi:10.1021/acs.langmuir.5b03081

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984

    Article  PubMed  PubMed Central  Google Scholar 

  • Baac H, Hajós JP, Lee J, Kim D, Kim SJ, Shuler ML (2006) Antibody-based surface plasmon resonance detection of intact viral pathogen. Biotechnol Bioeng 94(4):815–819

    Article  CAS  PubMed  Google Scholar 

  • Barik TK, Sahu B, Swain V (2008) Nanosilica – from medicine to pest control. Parasitol Res 103(2):253–258

    Article  CAS  PubMed  Google Scholar 

  • Bawankar SD, Bhople SB, Jaiswal VD (2012) Mobile networking for smart dust with RFID sensor networks. Int J Smart Sensors Ad Hoc Netw 2(3):62–66

    Google Scholar 

  • Bedos C, Cellier P, Calvet R, Barriuso E (2002) Occurrence of pesticides in the atmosphere in France. Agronomie 22:35–49

    Article  Google Scholar 

  • Bergeson LL (2010) Nanosilver: US EPA’s pesticide office considers how best to proceed. Environ Qual Manag 19(3):79–85

    Article  Google Scholar 

  • Bhagat D, Samanta SK, Bhattacharya S (2013) Efficient management of fruit pests by pheromone nanogels. Sci Rep 3:1294. doi:10.1038/srep01294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhattacharyya A, Bhaumik A, Rani PU, Mandal S, Epidi TT (2010) Nanoparticles – a recent approach to insect pest control. Afr J Biotechnol 9(24):3489–3493

    CAS  Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016a) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Cham, pp 307–319

    Chapter  Google Scholar 

  • Bhattacharyya A, Prasad R, Buhroo AA, Duraisamy P, Yousuf I, Umadevi M, Bindhu MR, Govindarajan M, Khanday AL (2016b) One-pot fabrication and characterization of silver nanoparticles using Solanum lycopersicum: an eco-friendly and potent control tool against Rose Aphid, Macrosiphum rosae. J Nanosci Article ID 4679410, 7 pages, http://dx.doi.org/10.1155/2016/4679410

  • Boonham N, Glover R, Tomlinson J, Mumford R (2008) Exploiting generic platform technologies for the detection and identification of plant pathogens. Eur J Plant Pathol 121:355–363

    Article  CAS  Google Scholar 

  • Bordes P, Pollet E, Avérous L (2009) Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci 34:125–155

    Article  CAS  Google Scholar 

  • Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, Voorde GT, Sips A (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53(1):52–62

    Article  CAS  PubMed  Google Scholar 

  • Bradley EL, Castle L, Chaudhry Q (2011) Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends Food Sci Technol 22:604–610

    Article  CAS  Google Scholar 

  • Byrappa K, Ohara S, Adschiri T (2008) Nanoparticle synthesis using supercritical fluid technology – towards biomedical applications. Adv Drug Deliv Rev 60:299–327

    Article  CAS  PubMed  Google Scholar 

  • Chakravarthy AK, Chandrashekharaiah KSB, Bhattacharya A, Dhanabala K, Gurunatha K, Ramesh P (2012) Bio efficacy of inorganic nanoparticles CdS, Nano-Ag and Nano-TiO2 against Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Curr Biotica 6(3):271–281

    Google Scholar 

  • Chartuprayoon N, Rheem Y, Chen W, Myung NV (2010) Detection of plant pathogen using LPNE grown single conducting polymer nanoribbon. In: Proceedings of the 218th ECS meeting. Las Vegas. October 10–15, p 2278

    Google Scholar 

  • Chau CF, Wu SH, Yen GC (2007) The development of regulations for food nanotechnology. Trends Food Sci Technol 18(5):269–280

    Article  CAS  Google Scholar 

  • Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Add Contam 25(3):241–258

    Article  CAS  Google Scholar 

  • Chen H, Yadav R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594

    Article  CAS  Google Scholar 

  • Chinnamuthu CR, Boopathi PM (2009) Nanotechnology and agroecosystem. Madras Agric J 96(1–6):17–31

    Google Scholar 

  • Chong MN, Jin B, Chow CW, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027

    Article  CAS  PubMed  Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N (2004) Antifungal activity of polymer-based copper nanocomposite coatings. Appl Phys Lett 85(12):2417–2419

    Article  CAS  Google Scholar 

  • Clemente Z, Castro VL, Jonsson CM, Fraceto LF (2011) Ecotoxicology of Nano-TiO – an evaluation of its toxicity to organisms of aquatic ecosystems. Int J Environ Res 6:33–50

    Google Scholar 

  • Currie HA, Perry CC (2007) Silica in plants: biological, biochemical and chemical studies. Ann Bot 100:1383–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De A, Bose R, Kumar A, Mozumdar S (2014) Targeted delivery of pesticides using biodegradable polymeric nanoparticles. Springer India, New Delhi, pp 59–81

    Google Scholar 

  • De Oliveira JL, Campos EVR, Bakshi M, Abhilash PC, Fraceto LF (2014) Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv 32(8):1550–1561

    Article  PubMed  CAS  Google Scholar 

  • Doyle M (2006) Nanotechnology: a brief literature review. Food Research Institute, University of Wisconsin, Madison

    Google Scholar 

  • Duran N, Marcato PD (2013) Nanobiotechnology perspectives, role of nanotechnology in the food industry: a review. Int J Food Sci Technol 48(6):1127–1134

    Article  CAS  Google Scholar 

  • Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S (2010) Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innovative Food Sci Emerg Technol 11:742–748

    Article  CAS  Google Scholar 

  • EPA (2010) Nanomaterial case studies: nanoscale titanium dioxide in water treatment and in topical sunscreen. RTP Division, European Protection Agency, Washington, DC. http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=230972. Accessed 11 Aug 2016

    Google Scholar 

  • Epstein E (2009) Silicon: its manifold roles in plants. Ann Appl Biol 155:155–160

    Article  CAS  Google Scholar 

  • Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharromán C, Moya JS (2009) Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles. Nanotechnology 20(50):505–701

    Article  CAS  Google Scholar 

  • Fanger GO (1974) Microencapsulation: a brief history and introduction. In: Vandegaer JE (ed) Microencapsulation: process and applications. Plenum Press, New York, pp 1–20

    Chapter  Google Scholar 

  • Forim MR, Costa ES, da Silva MFGF, Fernandes JB, Mondego JM, Junior ALB (2013) Development of a new method to prepare nano-microparticles loaded with extracts of Azadirachta indica, their characterization and use in controlling Plutella xylostella. J Agric Food Chem 61(38):9131–9139

    Article  CAS  PubMed  Google Scholar 

  • Friedmann D, Mendiveb C, Bahnemann D (2010) TiO for water treatment: parameters affecting the kinetics and mechanisms of photocatalysis. Appl Catal B Environ 99:398–406

    Article  CAS  Google Scholar 

  • Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582

    Article  CAS  Google Scholar 

  • Gao J, Xu B (2009) Applications of nanomaterials inside cells. Nano Today 4:37–51. doi:10.1016/j.nantod.2008.10.009

    Article  CAS  Google Scholar 

  • Gao X, Zou C, Wang L, Zhang F (2005) Silicon improves water use efficiency in maize plants. J Plant Nutr 27:1457–1470

    Article  CAS  Google Scholar 

  • Gao F, Hong F, Liu C, Zheng L, Su M, Wu X, Yang F, Wu C, Yang P (2006) Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach. Biol Trace Elem Res 111(1–3):239–253

    Article  CAS  PubMed  Google Scholar 

  • Garber C (2006) Nanotechnology food coming to a fridge near you. http://www.nanowerk.com/spotlight/spotid=1360.php. Accessed 11 Aug 2016

  • Garner KL, Keller AA (2014) Emerging patterns for engineered nanomaterials in the environment: a review of fate and toxicity studies. J Nanopart Res 16:250–253

    Article  Google Scholar 

  • Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titaniumdioxide: a review of fundamentals, process and problems. J Photochem Photobiol A Chem 9:1–12

    Article  CAS  Google Scholar 

  • Gehrke I, Geiser A, Somborn-Schulz A (2015) Innovations in nanotechnology for water treatment. Nanotechnol Sci Appl 8:1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29(6):792–803. doi:10.1016/j.biotechadv.2011.06.007

    Article  CAS  PubMed  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13(4):400–408. doi:10.1038/nmat3890

    Article  CAS  PubMed  Google Scholar 

  • Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60(39):9781–9792. doi:10.1021/jf302154y

    Article  CAS  PubMed  Google Scholar 

  • Goix S, Lévêque T, Xiong TT, Schreck E, Baeza-Squiban A, Geret F, Uzu G, Austruy A, Dumat C (2014) Environmental and health impacts of fine and ultrafine metallic particles: assessment of threat scores. Environ Res 133:185–194

    Article  CAS  PubMed  Google Scholar 

  • Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519(3):1252–1257. doi:10.1016/j.tsf.2010.08.079

    Article  CAS  Google Scholar 

  • Gruère GP (2011) Labeling nano-enabled consumer products. NanoToday 6(2):117–121

    Article  Google Scholar 

  • Haghighi M, Pessarakli M (2013) Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Sci Hortic 161:111–117

    Article  CAS  Google Scholar 

  • Haghighi M, Afifipour Z, Mozafarian M (2012) The effect of N-Si on tomato seed germination under salinity levels. J Biol Environ Sci 6:87–90

    Google Scholar 

  • Hasanpour H, Maali-Amiri R, Zeinali H (2015) Effect of TiO2 nanoparticles on metabolic limitations to photosynthesis under cold in chickpea. Russ J Plant Physiol 62:779–787

    Article  CAS  Google Scholar 

  • Hawrylak-Nowak B, Matraszek R, Szymańska M (2010) Selenium modifies the effect of short-term chilling stress on cucumber plants. Biol Trace Elem Res 138:307–315

    Article  CAS  PubMed  Google Scholar 

  • Hojjat SS (2016) The effect of silver nanoparticle on lentil seed germination under drought stress. Int J Farm Allied Sci 5(3):208–212

    Google Scholar 

  • Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005) Effect of nano titanium oxide on phytochemical reaction of chloroplast of spinach. Biol Trace Elem Res 105(1):269–279

    Article  CAS  PubMed  Google Scholar 

  • http://www.iranreview.org/content/Documents/Iranians_Researchers_Produce_Nano_Organic_Fertilizer.htm. Accessed 11 Aug 2016

  • https://fri.wisc.edu/files/Briefs_File/FRIBrief_Nanotech_Lit_Rev.pdf. Accessed 11 Aug 2016

  • Husen A, Siddiqi KS (2014) Carbon and fullerene nanomaterials in plant system. J Nanobiotechnol 12:16. doi:10.1186/1477-3155-12-16

    Article  CAS  Google Scholar 

  • Huyghebaert A, Van Huffel X, Houins G (2010) Nanotechnology in the food chain: opportunities and risks. Springer, Berlin

    Google Scholar 

  • Iran Nanotechnology Initiative Council (2009) First nano-organic iron chelated fertilizer invented in Iran

    Google Scholar 

  • Jaberzadeh A, Moaveni P, Moghadam THR, Zahedi H (2013) Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Not Bot Hortic Agrobot 41(1):201–207

    CAS  Google Scholar 

  • Jagadevan S, Jayamurthy M, Dobson P, Thompson IPA (2012) Novel hybrid nanozerovalent iron initiated oxidation biological degradation approach for remediation of recalcitrant waste metal working fluids. Water Res 46:2395–2404

    Article  CAS  PubMed  Google Scholar 

  • Jain KK (2005) The role of nanobiotechnology in drug discovery. Drug Discov Today 10(21):1435–1442. doi:10.1016/S1359-6446(05)03573-7

    Article  CAS  PubMed  Google Scholar 

  • Janmohammadi M, Amanzadeh T, Sabaghnia N, Ion V (2016) Effect of nano-silicon foliar application on safflower growth under organic and inorganic fertilizer regimes. Bot Lithuanica 22(1):53–64

    Google Scholar 

  • Jayaseelan C, Rahuman AA, Rajakumar G, Vishnu Kirthi A, Santhoshkumar T, Marimuthu S, Bagavan A, Kamaraj C, Zahir AA, Elango G (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heart leaf moon seed plant, Tinospora cordifolia Miers. Parasitol Res 109(1):185–194. doi:10.1007/s00436-010-2242-y

    Article  PubMed  Google Scholar 

  • Kah M (2015) Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation? Front Chem 3:64. doi:10.3389/fchem.2015.00064

    Article  PubMed  PubMed Central  Google Scholar 

  • Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol 43:1823–1867

    Article  CAS  Google Scholar 

  • Khan MN, Mobin M, Abbas ZK, AlMutairi KA, Siddiqui ZH (2016) Role of nanomaterials in plants under challenging environments. Plant Physiol Biochem. doi:10.1016/j.plaphy.2016.05.038

    Google Scholar 

  • Khater HF (2011) Ecosmart biorational insecticides: alternative insect control strategies. In: Parveen F (ed) Insecticides: advances in integrated pest management. InTech, Croatia, pp 780–782

    Google Scholar 

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  • Kim SJ, Ko SH, Kang KH, Han J (2010) Direct seawater desalination by ion concentration polarisation. Nat Nanotechnol 5:297–301

    Article  CAS  PubMed  Google Scholar 

  • Ko KS, Kong IC (2014) Toxic effects of nanoparticles on bioluminescence activity, seed germination, and gene mutation. Appl Microbiol Biotechnol 98:3295–3303

    Article  CAS  PubMed  Google Scholar 

  • Kohan-Baghkheirati E, Geisler-Lee J (2015) Gene expression, protein function and pathways of Arabidopsis thaliana responding to silver nanoparticles in comparison to silver ions, cold, salt, drought, and heat. Nanomaterials 5:436–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar J, Shakil NA, Khan MA, Malik K, Walia S (2011) Development of controlled release formulations of carbofuran and imidacloprid and their bioefficacy evaluation against aphid, Aphis gossypii and leafhopper, Amrasca biguttula (Ishida) on potato crop. J Environ Sci Health B 46(8):678–682. doi:10.1080/03601234.2012.592066

    CAS  PubMed  Google Scholar 

  • Kuzma J, Verhage P (2006) Nanotechnology in agriculture and food production: anticipated applications. Woodrow Wilson International Center for Scholars, Washington, DC. http://www.nanotechproject.org/process/assets/files/2706/94_pen4_agfood.pdf. Accessed 11 Aug 2016

    Google Scholar 

  • Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39(1):26–32. doi:10.4489/MYCO.2011.39.1.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkins B, Bringgs S, Delmer D, Dick R, Flavell R, Gressel J, Habtemariam T, Lal R, Pell AN, St Leger R, Wall RJ (2008) Emerging technologies to benefit farmers in sub-Saharan Africa and South Asia. National Academies Press, Washington, DC

    Google Scholar 

  • Lawrence MJ, Rees GD (2000) Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 45(1):89–121. doi:10.1016/S0169-409X(00)00103-4

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Mahendra S, Alvarez PJJ (2010) Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano 4(7):3580–3590. doi:10.1021/nn100866w

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585. doi:10.1021/es800422x

    Article  CAS  PubMed  Google Scholar 

  • Linglan M, Chao L, Chunxiang Q, Sitao Y, Jie L, Fengqing G, Fashui H (2008) Rubisco activase mRNA expression in spinach: modulation by nanoanatase treatment. Biol Trace Elem Res 122(2):168–178. doi:10.1007/s12011-007-8069-4

    Article  PubMed  CAS  Google Scholar 

  • Liu R, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci Rep 4:5686. doi:10.1038/srep05686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lodriche SS, Soltani S, Mirzazadeh R (2013) Silicon nanocarrier for delivery of drug, pesticides and herbicides, and for waste water treatment. United States Patent, US20130225412 A1

    Google Scholar 

  • López MM, Llop P, Olmos A, Marco-Noales E, Cambra M, Bertolini E (2009) Are molecular tools solving the challenges posed by detection of plant pathogenic bacteria and viruses? Curr Issues Mol Biol 11:13–46

    PubMed  Google Scholar 

  • Lövenstam G, Rauscher H, Roebben G, Sokull Klüttgen B, Gibson N, Putaud JP, Stamm H (2010) Considerations on a definition of nanomaterial for regulatory purposes. Publication Office of the European Union, Luxembourg. https://ec.europa.eu/jrc/sites/jrcsh/files/jrc_reference_report_201007_nanomaterials.pdf. Accessed 11 Aug 2016

    Google Scholar 

  • Lu CM, Zhang CY, Wen JQ, Wu GR, Tao MX (2002) Research on the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21(3):168–171

    CAS  Google Scholar 

  • Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50:11–18

    Article  CAS  Google Scholar 

  • McKeague MK, Giamberardino A, DeRosa MC (2011) Advances in aptamer based biosensors for food safety. In: Somerset V (ed) Environmental biosensors. InTech, Croatia, pp 17–42

    Google Scholar 

  • Miller DD (2010) Food nanotechnology: new leverage against iron deficiency. Nat Nanotechnol 5(5):318–319

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  CAS  PubMed  Google Scholar 

  • Moaveni P, Kheiri T (2011) TiO2 nano particles affected on maize (Zea mays L). In: 2nd international conference on agricultural and animal science. Maldives, pp 160–163

    Google Scholar 

  • Mogul MG, Akin H, Hasirci N, Trantolo DJ, Gresser JD, Wise DL (1996) Controlled release of biologically active agents for purposes of agricultural crop management. Resour Conserv Recycl 16:289–320

    Article  Google Scholar 

  • Mohammadi R, Maali-Amiri R, Abbasi A (2013) Effect of TiO2 nanoparticles on chickpea response to cold stress. Biol Trace Elem Res 152:403–410

    Article  CAS  PubMed  Google Scholar 

  • Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62:161–165

    Article  Google Scholar 

  • Montgomery MA, Elimelech M (2007) Water and sanitation in developing countries: including health in the equation. Environ Sci Technol 44(1):17–24

    Article  Google Scholar 

  • Mukal D, Sexena N, Dwivedi PD (2009) Emerging trends of nanoparticles application in food technology: safety paradigms. Nanotoxicol 3:10–18

    Article  CAS  Google Scholar 

  • Musante C, White JC (2010) Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environ Toxicol 27(9):510–517. doi:10.1002/tox.20667

    Article  PubMed  CAS  Google Scholar 

  • Naderi MR, Abedi A (2012) Application of nanotechnology in agriculture and refinement of environmental pollutants. J Nanotechnol 11(1):18–26

    Google Scholar 

  • Naderi MR, Danesh-Shahraki A (2013) Nanofertilizers and their roles in sustainable agriculture. Int J Agric Crop Sci 5(19):2229–2232

    Google Scholar 

  • Naidoo L, Kistnasamy EJ (2015) A desktop evaluation of the potential impact of nanotechnology applications in the field of environmental health in a developing country. Am J Publ Health Res 3(5):182–186

    Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179(3):154–163

    Article  CAS  Google Scholar 

  • Neethirajan S, Jayas DS (2010) Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol 4(1):39–47

    Article  CAS  Google Scholar 

  • Nord E (2009) Top 10 reasons for using nanotech in food. http://www.nanotech-now.com/news.cgi?story_id=32231. Accessed 11 Aug 2016

  • Nuruzzaman MD, Rahaman MM, Liu Y, Naidu R (2016) Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J Agric Food Chem 64:1447–1487

    Article  CAS  PubMed  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Pan B, Xing BS (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol 42:9005–9013

    Article  CAS  PubMed  Google Scholar 

  • Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22(3):295–302

    Article  Google Scholar 

  • Patterson DT, Westbrook JK, Joyce RJV, Lingren PD, Rogasik J (1999) Weeds, insects and diseases. Clim Chang 43:711–727

    Article  CAS  Google Scholar 

  • Pei ZF, Ming DF, Liu D, Wan GL, Geng XX, Gong HJ, Zhou WJ (2010) Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. J Plant Growth Regul 29:106–115

    Article  CAS  Google Scholar 

  • Pepper D (2011) The toxic consequences of the green revolution. http://www.usnews.com/news/world/articles/2008/07/07/the-toxic-consequences-of-the-green-revolution. Accessed 11 Aug 2016

  • Perez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65(5):540–545

    Article  CAS  PubMed  Google Scholar 

  • Perlatti B, Bergo PLS, Fernandes da Silva MFG, Fernandes JB, Forim MR (2013) Polymeric nanoparticle-based insecticides: a controlled release purpose for agrochemicals. In: Trdan S (ed) Insecticides: development of safer and more effective technologies. InTech, Rijeka. http://www.intechopen.com/books/insecticides-development-of-safer-and-more-effective-technologies/polymeric-nanoparticle-based-insecticides-a-controlled-release-purpose-for-agrochemicals. Accessed 11 Aug 2016

    Google Scholar 

  • Pothakamuri UR, Barbosa-Cánovas GV (1995) Fundamental aspects of controlled release in foods. Trends Food Sci Technol 6:397–406

    Article  Google Scholar 

  • Pourkhaloee A, Haghighi M, Saharkhiz MJ, Jouzi H, Doroodmand MM (2011) Investigation on the effects of carbon nanotubes (CNTs) on seed germination and seedling growth of salvia (Salvia microsiphon), pepper (Capsicum annum) and tall fescue (Festuca arundinacea). J Seed Technol 33:155–160

    Google Scholar 

  • Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer, International Publishing, Cham. ISBN:978-3-319-42989-2

    Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. doi:10.1002/wnan.1363

    Article  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. doi:10.3389/fmicb.2017.01014

  • Prasad R, Pandey R, Varma A, Barman I (2017b) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Kharkwal H, Janaswamy S (eds) Natural polymers for drug delivery. CABI, Oxfordshire, pp 53–70

    Google Scholar 

  • Qados AMSA, Moftah AE (2015) Influence of silicon and nano-silicon on germination, growth and yield of faba bean (Vicia faba L.) under salt stress conditions. Am J Exp Agric 5:509–524

    Article  Google Scholar 

  • Qu X, Alvarez PJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946

    Article  CAS  PubMed  Google Scholar 

  • Qureshi A, Kang WP, Davidson JL, Gurbuz Y (2009) Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications. Diam Relat Mater 18:1401–1420

    Article  CAS  Google Scholar 

  • Racuciu M, Creanga DE (2006) TMA-OH coated magnetic nanoparticles internalized in vegetal tissue. Rom J Phys 52(3–4):395–402

    Google Scholar 

  • Racuciu M, Miclauş S, Creanga DE (2009) The response of plant tissues to magnetic fluid and electromagnetic exposure. Rom J Biophys 19:73–82

    CAS  Google Scholar 

  • Rafi MM, Epstein E, Falk RH (1997) Silicon deprivation causes abnormalities in wheat (Triticum aestivum L.) J Plant Physiol 152:497–501

    Article  Google Scholar 

  • Ragaei M, Sabry AH (2014) Nanotechnology for insect pest control. Int J Sci Environ Technol 3(2):528–545

    Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94(2):287–293

    Article  CAS  PubMed  Google Scholar 

  • Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L). Agric Res 2(1):48–57

    Article  CAS  Google Scholar 

  • Raliya R, Tarafdar JC, Biswas P (2016) Enhancing the mobilization of native phosphorus in the mung bean rhizosphere using ZnO nanoparticles synthesized by soil fungi. J Agric Food Chem 64(16):3111–3118

    Article  CAS  PubMed  Google Scholar 

  • Rameshaiah GN, Pallavi J, Shabnam S (2015) Nanofertilizers and nano sensors – an attempt for developing smart agriculture. Int J Eng Res Gen Sci 3(1):314–320

    Google Scholar 

  • Rao KJ, Paria S (2013) Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturia inaequalis phytopathogens. RSC Adv 3(26):10471–10478

    Article  CAS  Google Scholar 

  • Renton A (2006) Welcome to the world of nanofoods. http://observer.guardian.co.uk/foodmonthly/futureoffood/story/0,,1971266,00.html. Accessed 11 Aug 2016

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59(8):3485–3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Risch SJ, Reineccius GA (1995) Encapsulation and controlled release of food ingredients. American Chemical Society, Washington, DC, p 590

    Book  Google Scholar 

  • Sabaghnia N, Janmohammadi M (2014) Graphic analysis of nano-silicon by salinity stress interaction on germination properties of lentil using the biplot method. Agric For 60(3):29–40

    Google Scholar 

  • Sabaghnia N, Janmohammadi M (2015) Effect of nano-silicon particles application on salinity tolerance in early growth of some lentil genotypes. Ann UMCS Biol 69:39–55

    Google Scholar 

  • Sadik OA, Zhou AL, Kikandi S, Du N, Wang Q, Varner K (2009) Sensors as tools for quantitation, nanotoxicity and nanomonitoring assessment of engineered nanomaterials. J Environ Monit 11(10):1782–1800

    Article  CAS  PubMed  Google Scholar 

  • Sasson Y, Levy-Ruso G, Toledano O, Ishaaya I (2007) Nanosuspensions: emerging novel agrochemical formulations. In: Ishaaya I, Nauen R, Horowitz AR (eds) Insecticides design using advanced technologies. Springer, Berlin, pp 1–39

    Chapter  Google Scholar 

  • Schnettler B, Crisóstomo G, Mills N, Miranda H, Mora M, Lobos G, Grunert KG (2013) Preferences for sunflower oil produced conventionally, produced with nanotechnology or genetically modified in the Araucanía region of Chile. Cien Inv Agric 40(1):17–29

    Article  Google Scholar 

  • Schoen DT, Schoen AP, Hu L, Kim HS, Heilshorn SC, Cui Y (2010) High speed water sterilization using one dimensional nano structures. Nano Lett 10(9):3628–3632

    Article  CAS  PubMed  Google Scholar 

  • Schulman JH, Stoeckenius W, Prince LM (1959) Mechanism of formation and structure of micro emulsions by electron microscopy. J Phys Chem 63(10):1677–1680

    Article  CAS  Google Scholar 

  • Scott N, Chen H, Rutzke CJ (2003) Nanoscale science and engineering for agriculture and food systems: a report submitted to cooperative state research, education and extension service. U.S. Department of Agriculture: National Planning Workshop, Washington, DC

    Google Scholar 

  • Seghatoleslami MJ, Feizi H, Mousavi G, Berahmand A (2015) Effect of magnetic field and silver nanoparticles on yield and water use efficiency of Carum copticum under water stress conditions. Pol J Chem Technol 17:110–114

    Article  CAS  Google Scholar 

  • Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma V, Sharma A (2012) Nanotechnology: an emerging future trend in wastewater treatment with its innovative products and processes. Int J Enhanc Res Sci Tech Eng 1:121–128

    Google Scholar 

  • Sharon M, Choudhary A, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2(4):83–92

    Google Scholar 

  • Singh A, Singh S, Prasad SM (2016) Scope of nanotechnology in crop science: profit or loss. Res Rev J Bot Sci 5(1):1–4

    Google Scholar 

  • Singh D, Singh SC, Kumar S, Lal B, Singh NB (2010) Effect of titanium dioxide nanoparticles on the growth and biochemical parameters of Brassica oleracea. In: Riberio C, de Assis OBG, Mattoso LHC, Mascarenas S (eds) International conference on food and agricultural applications of nanotechnologies. São Pedro

    Google Scholar 

  • Solanki P, Bhargava A, Chhipa H, Jain N, Panwar J (2015) Nano-fertilizers and their smart delivery system. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture. Springer, New York, pp 81–102

    Google Scholar 

  • Srivastava A, Rao DP (2014) Enhancement of seed germination and plant growth of wheat, maize, peanut and garlic using multiwalled carbon nanotubes. Eur Chem Bull 3(5):502–504

    CAS  Google Scholar 

  • Stadler T, Buteler M, Weaver DK, Sofie S (2012) Comparative toxicity of nanostructured alumina and a commercial inert dust for Sitophilus oryzae (L.) and Rhyzopertha dominica (F.) at varying ambient humidity levels. J Stored Prod Res 48:81–90

    Article  Google Scholar 

  • Subramanian KS, Manikanda A, Thirunavukkarasu M, Rahale CS (2015) Nano-fertilizers for balanced crop nutrition. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture. Springer, New York. doi:10.1007/978-3-319-14024-7_3

    Google Scholar 

  • Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N (2012) Silica nanoparticles for increased silica availability in maize (Zea mays L.) seeds under hydroponic conditions. Curr Nanosci 8:902–908

    Article  CAS  Google Scholar 

  • Tai-Chia C, Chih-Ching H (2009) Aptamer-functionalized nano-biosensors. Sensors 9(12):10356–10388

    Article  CAS  Google Scholar 

  • Tiwari DK, Dasgupta-Schubert N, Cendejas LMJV, Villegas J, Montoya LC, Garcia SEB (2014) Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl Nanosci 4(5):577–591

    Article  CAS  Google Scholar 

  • Torabian S, Zahedi M, Khoshgoftar AH (2016) Effects of foliar spray of two kinds of zinc oxide on the growth and ion concentration of sunflower cultivars under salt stress. J Plant Nutr 39:172–180

    Article  CAS  Google Scholar 

  • Tothill IE (2001) Biosensors developments and potential applications in the agricultural diagnosis sector. Comput Electron Agric 30:205–218

    Article  Google Scholar 

  • Tramon C (2014) Modelling the controlled release of essential oils from a polymer matrix – a special case. Ind Crop Prod 61:23–30

    Article  CAS  Google Scholar 

  • Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. NanoToday 1:44–48

    Article  Google Scholar 

  • van den Berg F, Kubiak R, Benjey WG, Majewski MS, Yates SR, Reeves GL, Smelt JH, van der Linden AMA (1999) Emission of pesticides into the air. In: Van Dijk HFG, Van Pul WAJ, De Voogt P (eds) Fate of pesticides in the atmosphere: implications for environmental risk assessment. Springer, Netherlands, pp 195–218

    Chapter  Google Scholar 

  • Vidyalakshmi R, Bhakyaraj R, Subhasree RS (2009) Encapsulation “the future of probiotics” – a review. Adv Biol Res 3(3–4):96–103

    Google Scholar 

  • Vinutha JS, Bhagat D, Bakthavatsalam N (2013) Nanotechnology in the management of polyphagous pest Helicoverpa armigera. J Acad Ind Res 1(10):606–608

    Google Scholar 

  • Wang H, Kou X, Pei Z, Xiao JQ, Shan X, Xing B (2011) Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicol 5(1):30–42

    Article  CAS  Google Scholar 

  • Wei C, Yamato M, Wei W, Zhao X, Tsumoto K, Yoshimura T, Ozawa T, Chen YJ (2007) Genetic nanomedicine and tissue engineering. Med Clin N Am 91:889–898

    Article  CAS  PubMed  Google Scholar 

  • Yada R (2009) Nanotechnology: a new frontier in foods, food packaging, and nutrient delivery. In: Pray L, Yaktine A (eds) Nanotechnology in food products. National Academies Press, Washington, DC

    Google Scholar 

  • Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY, Chiu CY, Liao CY, Hsu JJ, Lin ZP (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv Mater Res 79(82):513–516

    Article  CAS  Google Scholar 

  • Yin L, Colman BP, McGill BM, Wright JP, Bernhardt ES (2012) Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS One 7(10):476–474

    Article  CAS  Google Scholar 

  • Zaimenko NV, Didyk NP, Dzyuba OI, Zakrasov OV, Rositska NV, Viter AV (2014) Enhancement of drought resistance in wheat and corn by nanoparticles of natural mineral analcite. Ecol Balkanica 6(1):1–10

    Google Scholar 

  • Zareii FD, Roozbahani A, Hosnamidi A (2014) Evaluation the effect of water stress and foliar application of Fe nanoparticles on yield, yield components and oil percentage of safflower (Carthamus tinctorious L.) Int J Adv Biol Biomed Res 2:1150–1159

    Google Scholar 

  • Zhang W-X (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5(3):323–332

    Article  CAS  Google Scholar 

  • Zhang L, Webster TJ (2009) Nanotechnology and nanomaterials: promises for improved tissue regeneration. NanoToday 4:66–80

    Article  CAS  Google Scholar 

  • Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104(1):83–92

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devarajan Thangadurai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sangeetha, J. et al. (2017). Nanoagrotechnology for Soil Quality, Crop Performance and Environmental Management. In: Prasad, R., Kumar, M., Kumar, V. (eds) Nanotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4573-8_5

Download citation

Publish with us

Policies and ethics