Skip to main content

Classification of Left/Right Hand Movement EEG Signals Using Event Related Potentials and Advanced Features

  • Conference paper
  • First Online:
6th International Conference on the Development of Biomedical Engineering in Vietnam (BME6) (BME 2017)

Part of the book series: IFMBE Proceedings ((IFMBE,volume 63))

Abstract

An event-related potentials (ERPs) is the measured brain response that is the direct result of a specific sensory, cognitive, or motor event. Brain-Computer Interface (BCI) is a device that enables the use of the brain’s neural activity to communicate with others or to control machines, artificial limbs, or robots without direct physical movements. In this paper, event-related potential (ERP) components of P300 and the advanced features combined an artificial neural network (ANN) were used to classify the electroencephalogram (EEG) signals associated with left and right hand movements. The EEG dataset used in this research was obtained from PhysioNet. Data was preprocessed using the EEGLAB MATLAB toolbox and then was epoched on the stimulation time for P300 and the basis of Event-Related (De) Synchronization (ERD/ERS) and movement-related cortical potentials (MRCP) features. Mu/beta rhythms were isolated for the ERD/ERS analysis and delta rhythms were isolated for the MRCP analysis. The final feature vector included the P300, ERD, ERS, and MRCP features in addition to the mean, power and energy of the activations of the epoched feature datasets. The datasets were inputted into ANN. The results of classification is quite good and it is promised to be used in a BCI context to mentally control a computer or machine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wolpaw JR, Birbaumer N, Heetderks WJ, McFarland DJ, Peckham PH, Schalk G, Donchin E, Quatrano LA, Robinson CJ, Vaughan TM (2000) Brain-computer interface technology: a review of the first international meeting. IEEE Trans Rehabil Eng 8(2):164–173. doi:10.1109/TRE.2000.847807

    Article  Google Scholar 

  2. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791. doi:10.1016/S1388-2457(02)00057-3

    Article  Google Scholar 

  3. Pfurtscheller G, Neuper C (2001) Motor imagery and direct brain-computer communication. Proc IEEE 89(7):1123–1134. doi:10.1109/5.939829

    Article  Google Scholar 

  4. Farwell LA, Donchin E (1988) Taking off the top of your head-toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70(6):510–523

    Article  Google Scholar 

  5. Bayliss JD (2003) Use of the evoked potential P3 component for control in a virtual apartment. IEEE Trans Neural Syst Rehabil Eng 11(2):113–116. doi:10.1109/TNSRE.2003.814438

    Article  Google Scholar 

  6. Leeb R, Pfurtscheller G (2004) Walking through a virtual city by thought. In: proceedings of 26th annual international conference of the IEEE engineering in medicine and biology society, pp 4503–4506. doi:10.1109/IEMBS.2004.1404251

  7. Leeb R, Friedman D, Müller-Putz GR, Scherer R, Slater M, Pfurtscheller G (2007) Self-paced (asynchronous) BCI control of a wheelchair in virtual environments: a case study with a tetraplegic. Comput Intell Neurosci 2007:79642. doi:10.1155/2007/79642

    Article  Google Scholar 

  8. Scherer R, Lee F, Schloegl A, Leeb R, Bischof H, Pfurtscheller G (2008) Toward self-paced brain- computer communication: navigation through virtual worlds. IEEE Trans Biomed Eng 55(2):675–682. doi:10.1109/tbme.2007.903709

    Article  Google Scholar 

  9. Zhao QB, Zhang LQ, Cichockis A (2009) EEG-based asynchronous BCI control of a car in 3D virtual reality environments. Chin Sci Bull 54(1):78–87. doi:10.1007/s11434-008-0547-3

    Article  Google Scholar 

  10. Obermaier B, Neuper C, Guger C, Pfurtscheller G (2001) Information transfer rate in a five-classes brain-computer interface. IEEE Trans Neural Syst Rehabil Eng 9(3):283–288. doi:10.1109/7333.948456

    Article  Google Scholar 

  11. Kronegg J, Chanel G, Voloshynovskiy S, Pun T (2007) EEG-based synchronized brain-computer interfaces: a model for optimizing the number of mental tasks. IEEE Trans Neural Syst Rehabil Eng 15(1):50–58. doi:10.1109/tnsre.2007.891389

    Article  Google Scholar 

  12. Velasco-Álvarez R (2009) Asynchronous brain-computer interface to navigate in virtual environments using one motor imagery. LNCS 5517:698–705. doi:10.1007/978-3-642-02478-8_87

    Google Scholar 

  13. Ron-Angevin R, Diaz-Estrella A (2009) Brain-computer interface: changes in performance using virtual reality techniques. Neurosci Lett 449(2):123–127. doi:10.1016/j.neulet.2008.10.099

    Article  Google Scholar 

  14. Chen WD, Zhang JH, Zhang JC, Li Y, Qi Y, Su Y, Wu B, Zhang SM, Dai JH, Zheng XX et al (2010) A P300 based online brain-computer interface system for virtual hand control. J Zhejiang Univ-Sci C (Comput Electron) 11(8):587–597. doi:10.1631/jzus.C0910530

    Article  Google Scholar 

  15. Pfurtscheller G, Allison BZ, Brunner C, Bauernfeind G, Solis-Escalante T, Scherer R, Zander TO, Müller- Putz GR, Neuper C, Birbaumer N (2010) The hybrid BCI. Front Neurosci 4:30. doi:10.3389/fnpro.2010.00003

    Google Scholar 

  16. Pfurtscheller G, Neuper C, Flotzinger D, Pregenzer M (1997) EEG based discrimination between imagination of right and left hand movement. Electroencephalogr Clin Neurophysiol 103:642–651

    Article  Google Scholar 

  17. Sepulveda F (2011) Brain-actuated control of robot navigation. In: Barrera A (ed) Advances in robot navigation, InTech

    Google Scholar 

  18. Mohamed A-K (2011) Towards improved EEG interpretation in a sensorimotor BCI for the control of a prosthetic or orthotic hand, in Faculty of Engineering. University of Witwatersrand, Master of Science in Engineering, Johannesburg, p 144

    Google Scholar 

  19. Su Y, Qi Y, Luo J-X, Wu B, Yang F, Li Y, Zhuang Y-T, Zheng X-X, Chen W-D (2011) A hybrid brain-computer interface control strategy in a virtual environment. J Zhejiang Univ Sci C 12:351–361

    Article  Google Scholar 

  20. Wang Y, Hong B, Gao X, Gao S (2007) Implementation of a braincomputer interface based on three states of motor imagery. In: 29th annual international conference of the IEEE engineering in medicine and biology society, EMBS2007, pp 5059–5062

    Google Scholar 

  21. Guger C, Harkam W, Hertnaes C, Pfurtscheller G (1999) Prosthetic control by an EEG-based brain-computer interface (BCI). In: AAATE 5th European conference for the advancement of assistive technology, Düsseldorf, Germany

    Google Scholar 

  22. Kim JA, Hwang DU, Cho SY, Han SK (2003) Single trial discrimination between right and left hand movement with EEG signal. Proceedings of the 25th annual international conference of the IEEE engineering in medicine and biology society, vol 4. Cancun, Mexico, pp 3321–3324

    Google Scholar 

  23. Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR (2004) BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans Biomed Eng 51(6):1034–1043, 2004. [In 2008, this paper received the Best Paper Award from IEEE TBME]

    Google Scholar 

  24. Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE (2000) PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23):e215–e220 [Circulation Electronic Pages; http://circ.ahajournals.org/cgi/content/full/101/23/e215]

  25. Sleight J, Pillai P, Mohan S (2009) Classification of executed and imagined motor movement EEG signals. University of Michigan, Ann Arbor, pp 1–10

    Google Scholar 

  26. Deecke L, Weinberg H, Brickett P (1982) Magnetic fields of the human brain accompanying voluntary movements: bereitschaftsmagnetfeld. Exp Brain Res 48:144–148

    Article  Google Scholar 

  27. Neuper C, Pfurtscheller G (2001) Evidence for distinct beta resonance frequencies in human EEG related to specific sensorimotor cortical areas. Clin Neurophysiol 112:2084–2097

    Article  Google Scholar 

  28. Mohamed A-K (2011) Towards improved EEG interpretation in a sensorimotor BCI for the control of a prosthetic or orthotic hand. In: faculty of engineering. Universityof Witwatersrand, Master of Science in Engineering, Johannesburg, p 144

    Google Scholar 

  29. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics. Journal of Neuroscience Methods 134:9–21

    Article  Google Scholar 

  30. Gómez-Herrero G (2008) Automatic artifact removal (AAR) toolbox for MATLAB. In: transform methods for electroencephalography (EEG): http://kasku.org/projects/eeg/aar.htm

  31. Wolpaw J, Birbaumer N, McFarland D, Pfurtscheller G, Vaughan T (2002) Brain-computer interfaces for communication and control. Clinical Neurophysiology 113:767–791

    Article  Google Scholar 

  32. Vuckovic A, Sepulveda F (2008) Delta band contribution in cue based single trial classification of real and imaginary wrist movement. Med Biol Eng Comput 46:529–539

    Article  Google Scholar 

  33. Gu Y, Dremstrup K, Farina D (2009) Single-trial discrimination of type and speed of wrist movements from EEG recordings. Clin Neurophysiol 20:1596–1600. Smith J, Jones M Jr, Houghton L et al (1999) Future of health insurance. N Engl J Med 965:325–329

    Google Scholar 

Download references

Acknowledgements

I want to thank developers of the BCI2000 [23] instrumentation system for data. I get in PhysioNet [24].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Thi Minh Huong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Huong, N.T.M., Linh, H.Q., Khai, L.Q. (2018). Classification of Left/Right Hand Movement EEG Signals Using Event Related Potentials and Advanced Features. In: Vo Van, T., Nguyen Le, T., Nguyen Duc, T. (eds) 6th International Conference on the Development of Biomedical Engineering in Vietnam (BME6) . BME 2017. IFMBE Proceedings, vol 63. Springer, Singapore. https://doi.org/10.1007/978-981-10-4361-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4361-1_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4360-4

  • Online ISBN: 978-981-10-4361-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics