Skip to main content

Resonance Damping Methods of LCL Filter

  • Chapter
  • First Online:

Part of the book series: CPSS Power Electronics Series ((CPSS))

Abstract

The control challenges of LCL-type grid-connected inverter arise from the resonance problem. At the resonance frequency, the LCL filter resonance causes a sharp phase step down of −180° with a high resonance peak. This resonance peak would easily lead to system instability and should be damped. In this chapter, the resonance hazard resulted by the LCL filter is reviewed first, and then, the existing passive- and active-damping solutions are described systematically to reveal the relationship among them. Among the six basic passive-damping solutions, adding a resistor in parallel with capacitor shows the best damping performance, but it results in a high power loss. In order to avoid the power loss in the damping resistor, the active-damping solutions equivalent to a resistor in parallel with capacitor are derived, and the capacitor-current-feedback active damping is superior for its simple implementation and effectiveness. This chapter provides the basis for the study of the control techniques of LCL-type grid-connected inverter in the following chapters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Goodwin, G.C., Graebe, S.F., Salgado, M.E.: Control System Design. Prentice Hall, Upper Saddle River, NJ (2000)

    Google Scholar 

  2. Liserre, M., Dell’Aquila, A., Blaabjerg, F.: Stability improvements of an LCL-filter based three-phase active rectifier. In: Proceeding IEEE Power Electronics Specialists Conference, 1195–1201 (2002)

    Google Scholar 

  3. Liserre, M., Blaabjerg, F., Hansen, S.: Design and control of an LCL-filter-based three-phase active rectifier. IEEE Trans. Ind. Appl. 41(5), 1281–1291 (2005)

    Article  Google Scholar 

  4. Wang, T.C., Ye, Z., Sinha, G., Yuan, X.: Output filter design for a grid-interconnected three-phase inverter. In: Proceeding of the IEEE Power Electronics Specialists Conference, 779–784 (2003)

    Google Scholar 

  5. Rockhill, A.A., Liserre, M., Teodorescu, R., Rodriguez, P.: Grid filter design for a multi-megawatt medium-voltage voltage source inverter. IEEE Trans. Ind. Electron. 58(4), 1205–1217 (2011)

    Article  Google Scholar 

  6. Alzola, R.P., Liserre, M., Blaabjerg, F., Sebastián, R., Dannehl, J., Fuchs, F.W.: Analysis of the passive damping losses in LCL-filter-based grid converters. IEEE Trans. Power Electron. 28(6), 2642–2646 (2013)

    Article  Google Scholar 

  7. Mühlethaler, J., Schweizer, M., Blattmann, R., Kolar, J.W., Ecklebe, A.: Optimal design of LCL harmonic filters for three-phase PFC rectifiers. IEEE Trans. Power Electron. 28(7), 3114–3125 (2013)

    Article  Google Scholar 

  8. Tang, Y., Loh, P.C., Wang, P., Choo, F.H., Gao, F., Blaabjerg, F.: Generalized design of high performance shunt active power filter with output LCL filter. IEEE Trans. Ind. Electron. 59(3), 1443–1452 (2012)

    Article  Google Scholar 

  9. He, J., Li, Y.W.: Generalized closed-loop control schemes with embedded virtual impedances for voltage source converters with LC or LCL filters. IEEE Trans. Power Electron. 27(4), 1850–1861 (2012)

    Article  Google Scholar 

  10. Jia, Y., Zhao, J., Fu, X.: Direct grid current control of LCL-filtered grid-connected inverter mitigating grid voltage disturbance. IEEE Trans. Power Electron. 29(3), 1532–1541 (2014)

    Article  Google Scholar 

  11. Zou, Z., Wang, Z., Cheng, M.: Modeling, analysis, and design of multifunction grid-interfaced inverters with output LCL filter. IEEE Trans. Power Electron. 29(7), 3830–3839 (2014)

    Article  Google Scholar 

  12. Dannehl, J., Fuchs, F.W., Hansen, S., Thøgersen, P.B.: Investigation of active damping approaches for PI-based current control of grid-connected pulse width modulation converters with LCL filters. IEEE Trans. Ind. Appl. 46(4), 1509–1517 (2010)

    Article  Google Scholar 

  13. Xiao, H., Qu, X., Xie, S., Xu, J.: Synthesis of active damping for grid-connected inverters with an LCL filter. In: Proceeding of the IEEE Energy Conversion Congress and Exposition, 550–556 (2012)

    Google Scholar 

  14. Hanif, M., Khadkikar, V., Xiao, W., Kirtley, J.L.: Two degrees of freedom active damping technique for LCL filter-based grid connected PV systems. IEEE Trans. Ind. Electron. 61(6), 2795–2803 (2014)

    Article  Google Scholar 

  15. Xu, J., Xie, S., Tang, T.: Active damping-based control for grid-connected LCL-filtered inverter with injected grid current feedback only. IEEE Trans. Ind. Electron. 61(9), 4746–4758 (2014)

    Article  Google Scholar 

  16. Liserre, M., Teodorescu, R., Blaabjerg, F.: Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values. IEEE Trans. Power Electron. 21(1), 263–272 (2006)

    Article  Google Scholar 

  17. Dannehl, J., Liserre, M., Fuchs, F.W.: Filter-based active damping of voltage source converters with LCL filter. IEEE Trans. Ind. Electron. 58(8), 3623–3633 (2011)

    Article  Google Scholar 

  18. Zhang, S., Jiang, S., Lu, X., Ge, B., Peng, F.Z.: Resonance issues and damping techniques for grid-connected inverters with long transmission cable. IEEE Trans. Power Electron. 29(1), 110–120 (2014)

    Article  Google Scholar 

  19. Liserre, M., Blaabjerg, F., Teodorescu, R.: Grid impedance estimation via excitation of LCL-filter resonance. IEEE Trans. Ind. Appl. 43(5), 1401–1407 (2007)

    Article  Google Scholar 

  20. Zhou, X., Fan, J., Huang, A.Q.: High-frequency resonance mitigation for plug-in hybrid electric vehicles’ integration with a wide range of grid conditions. IEEE Trans. Power Electron. 27(11), 4459–4471 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinbo Ruan .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd. and Science Press

About this chapter

Cite this chapter

Ruan, X., Wang, X., Pan, D., Yang, D., Li, W., Bao, C. (2018). Resonance Damping Methods of LCL Filter. In: Control Techniques for LCL-Type Grid-Connected Inverters . CPSS Power Electronics Series. Springer, Singapore. https://doi.org/10.1007/978-981-10-4277-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4277-5_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4276-8

  • Online ISBN: 978-981-10-4277-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics