Skip to main content

Part of the book series: CPSS Power Electronics Series ((CPSS))

Abstract

After 200 years of continuous extraction and recent massive consumption, fossil fuels have rapidly become depleted. At the same time, the process of consuming fossil energy has produced a large amount of waste, which has seriously polluted the environment, jeopardizing the long-term sustainability of development of our society. The renewable energy-based distributed power generation system (RE-DPGS) has been attracting a great deal of attention due to its sustainable and environmental-friendly features, and its use represents an effective approach to dealing with future energy shortage and environmental pollution. As the energy conversion interface between the renewable energy power generation units and the grid, the grid-connected inverter plays an important role for the safe, stable, and high-quality operation of RE-DPGS. The worldwide energy situation is first reviewed in this chapter, and then, the typical configurations and the advantages of the RE-DPGS are introduced. The key control technologies of the LCL-type grid-connected inverter are also systematically elaborated including: (1) design and magnetic integration of LCL filter, (2) resonance damping methods, (3) design of controller parameters, (4) control delay effects and the compensation methods, (5) suppressing grid current distortion caused by grid-voltage harmonics, and (6) grid-impedance effects on system stability and the improvement methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. British Petroleum Company.: BP statistical review of world energy (2016)

    Google Scholar 

  2. REN21.: Renewables 2016: global status report (2016)

    Google Scholar 

  3. Lopes, J., Moreira, C., Madureira, A.: Defining control strategies for micro grids islanded operation. IEEE Trans. Power Syst. 21(2), 916–924 (2006)

    Article  Google Scholar 

  4. Mitra, J., Vallem, M.: Determination of storage required to meet reliability guarantees on island-capable micro-grids with intermittent sources. IEEE Trans. Power Syst. 27(4), 2360–2367 (2012)

    Article  Google Scholar 

  5. Lamont, A.: Assessing the economic value and optimal structure of large-scale electricity storage. IEEE Trans. Power Syst. 28(2), 911–921 (2013)

    Article  Google Scholar 

  6. Ghofrani, M., Arabali, A., Amoli, M., Fadali, M.S.: Energy storage application for performance enhancement of wind integration. IEEE Trans. Power Syst. 28(4), 4803–4811 (2013)

    Article  Google Scholar 

  7. Eid, A.: Control of hybrid energy systems micro-grid. In: Proceeding of the IEEE International Conference on Smart Energy Grid Engineering, pp. 1−6 (2013)

    Google Scholar 

  8. Majumder, R.: A hybrid microgrid with dc connection at back-to-back converters. IEEE Trans. Smart Grid 5(1), 251–259 (2014)

    Article  Google Scholar 

  9. Li, Y., Vilathgamuwa, D., Loh, P.: Design, analysis, and real-time testing of a controller for multi-bus micro-grid system. IEEE Trans. Power Electron. 19(5), 1195–1204 (2004)

    Article  Google Scholar 

  10. Katiraei, F., Iravani, M., Lehn, P.: Micro-grid autonomous operation during and subsequent to islanding process. IEEE Trans. Power Deliv. 20(1), 248–257 (2005)

    Article  Google Scholar 

  11. Shen, G., Zhu, X., Zhang, J., Xu, D.: A new feedback method for PR current control of LCL-filter-based grid-connected inverter. IEEE Trans. Ind. Electron. 57(6), 2033–2041 (2010)

    Article  Google Scholar 

  12. Mariéthoz, S., Morari, M.: Explicit model-predictive control of a PWM inverter with an LCL filter. IEEE Trans. Ind. Electron. 56(2), 389–399 (2009)

    Article  Google Scholar 

  13. Liserre, M., Blaabjerg, F., Hansen, S.: Design and control of an LCL-filter-based three-phase active rectifier. IEEE Trans. Ind. Appl. 41(5), 1281–1291 (2005)

    Article  Google Scholar 

  14. Liserre, M., Teodorescu, R., Blaabjerg, F.: Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values. IEEE Trans. Power Electron. 21(1), 263–272 (2006)

    Article  Google Scholar 

  15. Liserre, M., Dell’Aquila, A., Blaabjerg, F.: Stability improvements of an LCL-filter based three–phase active rectifier. In: Proceeding of the IEEE Power Electronics Specialists Conference, pp. 1195–1201 (2002)

    Google Scholar 

  16. Abeyasekera, T., Johnson, C.M., Atkinson, D.J., Armstrong, M.: Suppression of line voltage related distortion in current controlled grid connected inverters. IEEE Trans. Power Electron. 20(6), 1393–1401 (2005)

    Article  Google Scholar 

  17. IEEE Recommended Practice for Utility Interface of Photovoltaic (PV) Systems, IEEE Std. 929 (2000)

    Google Scholar 

  18. IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems, IEEE Std. 1547 (2003)

    Google Scholar 

  19. Zumel, P., Garcia, O., Cobos, J., Uceda, J.: Magnetic integration for interleaved converters. In: Proceeding of the IEEE Applied Power Electronics Conference and Exposition, pp. 1143–1149 (2003)

    Google Scholar 

  20. Chen, Q., Ruan, X., Yan, Y.: The application of the magnetic-integration techniques in switching power supply. Trans. China Electrotech. Soc. 19(3), 1–8 (2004) (in Chinese)

    Google Scholar 

  21. Chen, W., Lee, F., Zhou, X., Xu, P.: Integrated planar inductor scheme for multi-module interleaved quasi-square-wave (QSW) dc/dc converter. In: Proceeding of the IEEE Power Electronics Specialists Conference, pp. 759–762 (1999)

    Google Scholar 

  22. Vanwyk, J.D., Lee, F.C., Liang, Z., Chen, R., Wang, S., Lu, B.: Integrating active, passive and EMI-filter functions in power electronics systems: a case study of some technologies. IEEE Trans. Power Electron. 20(3), 523–536 (2005)

    Article  Google Scholar 

  23. Yang, B., Chen, R., Lee, F.C.: Integrated magnetic for LLC resonant converter. In: Proceeding of the IEEE Applied Power Electronics Conference and Exposition, pp. 346–351 (2002)

    Google Scholar 

  24. Wong, P., Xu, P., Yang, B., Lee, F.C.: Performance improvements of interleaving VRMs with coupling inductors. IEEE Trans. Power Electron. 16(4), 499–507 (2001)

    Article  Google Scholar 

  25. Zhu, G., McDonald, B., Wang, K.: Modeling and analysis of coupled inductors in power converters. IEEE Trans. Power Electron. 26(5), 1355–1363 (2011)

    Article  Google Scholar 

  26. Yang, F., Ruan, X., Yang, Y., Ye, Z.: Interleaved critical current mode boost PFC converter with coupled inductor. IEEE Trans. Power Electron. 26(9), 2404–2413 (2011)

    Article  Google Scholar 

  27. Cuk, S.: Coupled inductor and integrated magnetics techniques in power electronics. In: Proceeding of the Telecommunications Energy Conference, pp. 269–275 (1983)

    Google Scholar 

  28. Maksimović, D., Erickson, R.W., Griesbach, C.: Modeling of cross-regulation in converters containing coupled inductors. IEEE Trans. Power Electron. 15(4), 607–615 (2000)

    Article  Google Scholar 

  29. Peña-Alzola, R., Liserre, M., Blaabjerg, F., Sebastián, R., Dannehl, J., Fuchs, F.W.: Analysis of the passive damping losses in LCL-filter based grid converters. IEEE Trans. Power Electron. 28(6), 2642–2646 (2013)

    Article  Google Scholar 

  30. Wang, T., Ye, Z., Sinha, G., Yuan, X.: Output filter design for a grid-interconnected three-phase inverter. In: Proceeding of the Power Electronics Specialist Conference, pp. 779–784 (2003)

    Google Scholar 

  31. Dannehl, J., Liserre, M., Fuchs, F.W.: Filter-based active damping of voltage source converters with LCL-filter. IEEE Trans. Ind. Electron. 58(8), 3623–3633 (2011)

    Article  Google Scholar 

  32. Blasko, V., Kaura, V.: A novel control to actively damp resonance in input LC filter of a three-phase voltage source converter. IEEE Trans. Ind. Appl. 33(2), 542–550 (1997)

    Article  Google Scholar 

  33. Dahono, P., Bahar, Y., Sato, Y., Kataoka, T.: Damping of transient oscillations on the output LC filter of PWM inverters by using a virtual resistor. In: Proceeding of the IEEE International Conference on Power Electronics and Drive Systems, pp. 403–407 (2001)

    Google Scholar 

  34. Dannehl, J., Fuchs, F.W., Thøgersen, P.: PI state space current control of grid-connected PWM converters with LCL filters. IEEE Trans. Power Electron. 25(9), 2320–2330 (2010)

    Article  Google Scholar 

  35. Gabe, I., Montagner, V., Pinheiro, H.: Design and implementation of a robust current controller for VSI connected to the grid through an LCL filter. IEEE Trans. Power Electron. 24(6), 1444–1452 (2009)

    Article  Google Scholar 

  36. Espí, J., Castelló, J., García-Gil, R., Figueres, E.: An adaptive robust predictive current control for three-phase grid-connected inverters. IEEE Trans. Ind. Electron. 58(8), 3537–3546 (2011)

    Article  Google Scholar 

  37. Ahmed, K.H., Massoud, A.M., Finney, S.J., Williams, B.W.: A modified stationary reference frame-based predictive current control with zero steady-state error for LCL coupled inverter-based distributed generation systems. IEEE Trans. Ind. Electron. 58(4), 1359–1370 (2011)

    Article  Google Scholar 

  38. Doyle, J., Glover, K., Khargonekar, P.: State-space solutions to standard H2 and H control problems. IEEE Trans. Automat. Control 34(8), 831–847 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  39. Willmann, G., Coutinho, D.F., Pereira, L.F.A., Libano, F.B.: Multiple-loop h-infinity control design for uninterruptible power supplies. IEEE Trans. Ind. Electron. 54(3), 1591–1602 (2007)

    Article  Google Scholar 

  40. Hornik, T., Zhong, Q.: A current-control strategy for voltage-source inverters in microgrids based on H and repetitive control. IEEE Trans. Power Electron. 26(3), 943–952 (2011)

    Article  Google Scholar 

  41. Yang, S., Lei, Q., Peng, F., Qian, Z.: A robust control scheme for grid-connected voltage-source inverters. IEEE Trans. Ind. Electron. 58(1), 202–212 (2011)

    Article  Google Scholar 

  42. Wu, R., Dewan, S., Slemon, G.: Analysis of an AC-DC voltage source converter using PWM with phase and amplitude control. IEEE Trans. Ind. Appl. 27(2), 355–364 (1991)

    Article  Google Scholar 

  43. Mastromauro, R.A., Liserre, M., Kerekes, T., Dell’Aquila, A.: A single-phase voltage-controlled grid-connected photovoltaic system with power quality conditioner functionality. IEEE Trans. Ind. Electron. 56(11), 4436–4444 (2009)

    Article  Google Scholar 

  44. Ko, S.H., Lee, S.R., Dehbonei, H., Nayar, C.V.: Application of voltage- and current-controlled voltage source inverters for distributed generation systems. IEEE Trans. Energy Convers. 21(3), 782–792 (2006)

    Article  Google Scholar 

  45. Twining, E., Holmes, D.G.: Grid current regulation of a three-phase voltage source inverter with an LCL input filter. IEEE Trans. Power Electron. 18(3), 888–895 (2003)

    Article  Google Scholar 

  46. Dannehl, J., Fuchs, F.W., Hansen, S., Thogersen, P.B.: Investigation of active damping approaches for PI-based current control of grid-connected pulse width modulation converters with LCL filters. IEEE Trans. Ind. Appl. 46(2), 1509–1517 (2010)

    Article  Google Scholar 

  47. Tang, Y., Loh, P., Wang, P.: Exploring inherent damping characteristic of LCL-filters for three-phase grid-connected voltage source inverters. IEEE Trans. Power Electron. 27(3), 1433–1443 (2012)

    Article  Google Scholar 

  48. Figueres, E., Garcera, G., Sandia, J., Gonzalez-Espin, F., Rubio, J.C.: Sensitivity study of the dynamics of three-phase photovoltaic inverters with an LCL grid filter. IEEE Trans. Ind. Electron. 56(3), 706–717 (2009)

    Article  Google Scholar 

  49. Blaabjerg, F., Teodorescu, R., Liserre, M., Timbus, A.V.: Overview of control and grid synchronization for distributed power generation systems. IEEE Trans. Ind. Electron. 53(5), 1398–1409 (2006)

    Article  Google Scholar 

  50. Holmes, D.G., Lipo, T.A., McGrath, B., Kong, W.Y.: Optimized design of stationary frame three phase ac current regulator. IEEE Trans. Power Electron. 24(11), 2417–2426 (2009)

    Article  Google Scholar 

  51. Bao, C., Ruan, X., Li, W., Wang, X., Pan, D., Weng, K.: Step-by-step controller design for LCL-type grid-connected inverter with capacitor-current-feedback active-damping. IEEE Trans. Power Electron. 29(3), 1239–1253 (2014)

    Article  Google Scholar 

  52. Erickson, W., Maksimovic, D.: Fundamentals of Power Electronics, 2nd edn. Kluwer, Boston, MA (2001)

    Book  Google Scholar 

  53. Liu, F., Zhou, Y., Duan, S., Yin, J., Liu, B.: Parameter design of a two-current-loop controller used in a grid-connected inverter system with LCL filter. IEEE Trans. Ind. Electron. 56(11), 4483–4491 (2009)

    Article  Google Scholar 

  54. Zmood, D., Holmes, D.G.: Stationary frame current regulation of PWM inverters with zero steady-state error. IEEE Trans. Power Electron. 18(3), 814–822 (2003)

    Article  Google Scholar 

  55. Pan, D., Ruan, X., Bao, C., Li, W., Wang, X.: Capacitor-current-feedback active damping with reduced computation delay for improving robustness of LCL-Type grid-connected inverter. IEEE Trans. Power Electron. 29(7), 3414–3427 (2014)

    Article  Google Scholar 

  56. Mattavelli, P.: A closed-loop selective harmonic compensation for active filters. IEEE Trans. Ind. Appl. 37(1), 81–89 (2001)

    Article  Google Scholar 

  57. Liserre, M., Teodorescu, R., Blaabjerg, F.: Multiple harmonics control for three-phase grid converter systems with the use of PI-RES current controller in a rotating frame. IEEE Trans. Power Electron. 21(3), 836–841 (2006)

    Article  Google Scholar 

  58. Teodorescu, R., Liserre, M., Rodríguez, P.: Grid Converters for Photovoltaic and Wind Power Systems. IEEE & Wiley, West Sussex, UK (2011)

    Book  Google Scholar 

  59. Zhang, X., Spencer, W.J., Guerrero, J.M.: Small-signal modeling of digitally controlled grid-connected inverters with LCL filters. IEEE Trans. Ind. Electron. 60(9), 3752–3765 (2013)

    Article  Google Scholar 

  60. Pan, D., Ruan, X., Bao, C., Li, W., Wang, X.: Optimized controller design for LCL-type grid-connected inverter to achieve high robustness against grid-impedance variation. IEEE Trans. Ind. Electron. 62(3), 1537–1547 (2015)

    Article  Google Scholar 

  61. Jalili, K., Bernet, S.: Design of LCL filters of active-front-end two-level voltage-source converters. IEEE Trans. Ind. Electron. 56(5), 1674–1689 (2009)

    Article  Google Scholar 

  62. Lee, K., Jahns, T.M., Lipo, T.A., Blasko, V.: New control method including state observer of voltage unbalance for grid voltage-source converters. IEEE Trans. Ind. Electron. 57(6), 2054–2065 (2010)

    Article  Google Scholar 

  63. Mastromauro, R.A., Liserre, M., Aquila, A.D.: Study of the effects of inductor nonlinear behavior on the performance of current controllers for single-phase PV grid converters. IEEE Trans. Ind. Electron. 55(5), 2043–2052 (2008)

    Article  Google Scholar 

  64. Generating Plants Connected the Medium-Voltage Network. BDEW Technical Guideline (2008)

    Google Scholar 

  65. Technical Rule for Distributed Resources Connected to Power Grid, Q/GDW 480 (2010) (in Chinese)

    Google Scholar 

  66. Technical Rule for Photovoltaic Power Station Connected to Power Grid, Q/GDW 617 (2011) (in Chinese)

    Google Scholar 

  67. Timbus, A.V., Ciobotaru, M., Teodorescu, R., Blaabjerg, F.: Adaptive resonant controller for grid-connected converters in distributed power generation systems. In: Proceeding of the IEEE Applied Power Electronics Conference and Exposition, pp. 1601–1606 (2006)

    Google Scholar 

  68. Hara, S., Yamamoto, Y., Omata, T., Nakano, M.: Repetitive control system: a new type servo system for periodic exogenous signals. IEEE Trans. Automat. Control 33(7), 659–668 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  69. Tzou, Y., Ou, R., Jung, S., Chang, M.: High-performance programmable ac power source with low harmonic distortion using DSP-based repetitive control technique. IEEE Trans. Power Electron. 12(4), 715–725 (1997)

    Article  Google Scholar 

  70. Zhang, K., Kang, Y., Xiong, J., Chen, J.: Direct repetitive control of SPWM inverter for UPS purpose. IEEE Trans. Power Electron. 18(3), 784–792 (2003)

    Article  Google Scholar 

  71. Mattavelli, P., Marafão, F.: Repetitive-based control for selective harmonic compensation in active power filters. IEEE Trans. Ind. Electron. 51(5), 1018–1024 (2004)

    Article  Google Scholar 

  72. Zhou, L., Jian, X., Zhang, K., Shi, P.: A high precision multiple loop control strategy for three phase PWM inverters. In: Proceeding of the Annual Conference on IEEE Industrial Electronics, pp. 1781–1786 (2006)

    Google Scholar 

  73. Timbus, A.V., Liserre, M., Teodorescu, R., Rodriguez, P., Blaabjerg, F.: Evaluation of current controllers for distributed power generation systems. IEEE Trans. Power Electron. 24(3), 654–664 (2009)

    Article  Google Scholar 

  74. Kim, J. Sul, S.: New control scheme for ac-dc-ac converter without dc link electrolytic capacitor. In: Proceeding of the IEEE Power Electronics Specialists Conference, pp. 300–306 (1993)

    Google Scholar 

  75. Zeng, Q., Chang, L.: An advanced SVPWM-based predictive current controller for three-phase inverters in distributed generation systems. IEEE Trans. Ind. Electron. 55(3), 1235–1246 (2008)

    Article  Google Scholar 

  76. Wang, X., Ruan, X., Liu, S., Tse, C.K.: Full feed-forward of grid voltage for grid-connected inverter with LCL filter to suppress current distortion due to grid voltage harmonics. IEEE Trans. Power Electron. 25(12), 3119–3127 (2010)

    Article  Google Scholar 

  77. Park, S., Chen, C., Lai, J., Moon, S.: Admittance compensation in current loop control for a grid-tie LCL fuel cell inverter. IEEE Trans. Power Electron. 23(4), 1716–1723 (2008)

    Article  Google Scholar 

  78. Magueed, F., Svensson, J.: Control of VSC connected to the grid through LCL-filter to achieve balanced currents. In: Proceeding of the IEEE Industry Applications Conference, pp. 572–578 (2005)

    Google Scholar 

  79. Kaura, V., Blasko, V.: Operation of a phase locked loop system under distorted utility conditions. IEEE Trans. Ind. Appl. 33(1), 58–63 (1997)

    Article  Google Scholar 

  80. Chung, S.: A phase tracking system for three phase utility interface inverters. IEEE Trans. Power Electron. 15(3), 431–438 (2000)

    Article  Google Scholar 

  81. Rodríguez, P., Luna, A., Muñoz-Aguilar, R.: A stationary reference frame grid synchronization system for three-phase grid-connected power converters under adverse grid conditions. IEEE Trans. Power Electron. 27(1), 99–112 (2012)

    Article  Google Scholar 

  82. Hoffmann, N., Lohde, R., Fischer, M., Asiminoaei, L., Thogersen, P.B.: A review on fundamental grid-voltage detection methods under highly distorted conditions in distributed power-generation networks. In: Proceeding of the IEEE Energy Conversion Congress and Exposition, pp. 3045–3052 (2011)

    Google Scholar 

  83. Liccardo, F., Marino, P., Raimondo, G.: Robust and fast three-phase PLL tracking system. IEEE Trans. Ind. Electron. 58(1), 221–231 (2011)

    Article  Google Scholar 

  84. Eren, S., Karimi-Ghartemani, M., Bakhshai, A.: Enhancing the three-phase synchronous reference frame PLL to remove unbalance and harmonic errors. In: Proceeding of the Annual Conference of IEEE Industrial Electronics, pp. 437–441 (2009)

    Google Scholar 

  85. Freijedo, F., Yepes, A., López, Ó., Vidal, A., Doval-Gandoy, J.: Three-phase PLLs with fast postfault retracking and steady-state rejection of voltage unbalance and harmonics by means of lead compensation. IEEE Trans. Power Electron. 26(1), 85–97 (2011)

    Article  Google Scholar 

  86. Carugati, I., Maestri, S., Donato, P., Carrica, D., Benedetti, M.: Variable sampling period filter PLL for distorted three-phase systems. IEEE Trans. Power Electron. 27(1), 321–330 (2012)

    Article  Google Scholar 

  87. Freijedo, F., Doval-Gandoy, J., López, Ó., Acha, E.: Tuning of phase-locked loops for power converters under distorted utility conditions. IEEE Trans. Ind. Appl. 45(6), 2039–2047 (2009)

    Article  Google Scholar 

  88. Yuan, X., Merk, W., Stemmler, H., Allmeling, J.: Stationary-frame generalized integrators for current control of active power filters with zero steady-state error for current harmonics of concern under unbalanced and distorted operating conditions. IEEE Trans. Ind. Electron. 38(2), 523–532 (2002)

    Google Scholar 

  89. Rodríguez, P., Timbus, A.V., Teodorescu, R., Liserre, M., Blaabjerg, F.: Flexible active power control of distributed power generation systems during grid faults. IEEE Trans. Ind. Electron. 54(5), 2583–2592 (2007)

    Article  Google Scholar 

  90. Castilla, M., Miret, J., Sosa, J., Matas, J., de Vicuña, L.G.: Grid-faults control scheme for three-phase photovoltaic inverters with adjustable power quality characteristics. IEEE Trans. Power Electron. 25(12), 2930–2940 (2010)

    Article  Google Scholar 

  91. Rodríguez, P., Timbus, A.V., Teodorescu, R., Liserre, M., Blaabjerg, F.: Reactive power control for improving wind turbine system behavior under grid faults. IEEE Trans. Power Electron. 24(7), 1798–1801 (2010)

    Article  Google Scholar 

  92. Karimi-Ghartemani, M., Iravani, M.: A method for synchronization of power electronic converters in polluted and variable-frequency environments. IEEE Trans. Power Syst. 19(3), 1263–1270 (2004)

    Article  Google Scholar 

  93. Karimi-Ghartemani, M., Karimi, H., Iravani, M.: A magnitude/phase-locked loop system based on estimation of frequency and in-phase/quadrature-phase amplitudes. IEEE Trans. Ind. Electron. 51(2), 511–517 (2004)

    Article  Google Scholar 

  94. Rodríguez, P., Teodorescu, R., Candela, I., Timbus, A.V., Liserre, M., Blaabjerg, F.: New positive-sequence voltage detector for grid synchronization of power converters under faulty grid conditions. In: Proceeding of the IEEE Power Electronics Specialists Conference, pp. 1–7 (2006)

    Google Scholar 

  95. Rodríguez, P., Karimi, H., Luna, A., Candela, I., Mujal, R.: Multiresonant frequency-locked loop for grid synchronization of power converters under distorted grid conditions. IEEE Trans. Ind. Electron. 58(1), 127–138 (2011)

    Article  Google Scholar 

  96. Rodríguez, P., Pou, J., Bergas, J., Candela, J., Burgos, R.P.I., Boroyevich, D.: Decoupled double synchronous reference frame PLL for power converters control. IEEE Trans. Power Electron. 22(2), 584–592 (2007)

    Article  Google Scholar 

  97. Guo, X., Wu, W., Chen, Z.: Multiple-complex coefficient-filter-based phase-locked loop and synchronization technique for three-phase grid-interfaced converters in distributed utility networks. IEEE Trans. Ind. Electron. 58(4), 1194–1204 (2011)

    Article  Google Scholar 

  98. Svensson, J., Bongiorno, M., Sannino, A.: Practical implementation of delayed signal cancellation method for phase-sequence separation. IEEE Trans. Power Deliv. 22(1), 18–26 (2007)

    Article  Google Scholar 

  99. Souza, H., Bradaschia, F., Neves, F., Cavalcanti, M.C., Azevedo, G.M.S., de Arruda, J.P.: A method for extracting the fundamental-frequency positive-sequence voltage vector based on simple mathematical transformations. IEEE Trans. Ind. Electron. 56(5), 1539–1547 (2009)

    Article  Google Scholar 

  100. Neves, F., Cavalcanti, M., Souza, H., Bradaschia, F., Bueno, E.J., Rizo, M.: A generalized delayed signal cancellation method for detecting fundamental-frequency positive-sequence three-phase signals. IEEE Trans. Power Deliv. 25(3), 1816–1825 (2010)

    Article  Google Scholar 

  101. Neves, F., Souza, H., Cavalcanti, M., Bradaschia, F., Bueno, E.J.: Digital filters for fast harmonic sequence component separation of unbalanced and distorted three-phase signals. IEEE Trans. Ind. Electron. 59(10), 3847–3859 (2012)

    Article  Google Scholar 

  102. Wang, Y., Li, Y.: Grid synchronization PLL based on cascaded delayed signal cancellation. IEEE Trans. Power Electron. 26(7), 1987–1997 (2011)

    Article  Google Scholar 

  103. Wang, Y., Li, Y.: Analysis and digital implementation of cascaded delayed-signal- cancellation PLL. IEEE Trans. Power Electron. 26(4), 1067–1080 (2011)

    Article  Google Scholar 

  104. Xu, J., Xie, S., Tang, T.: Evaluations of current control in weak grid case for grid-connected LCL-filtered inverter. IET Power Electron. 6(2), 227–234 (2013)

    Article  Google Scholar 

  105. Sun, J.: Impedance-based stability criterion for grid-connected inverters. IEEE Trans. Power Electron. 26(11), 3075–3078 (2011)

    Google Scholar 

  106. Céspedes, M., Sun, J.: Impedance modeling and analysis of grid-connected voltage-source converters. IEEE Trans. Power Electron. 29(3), 1254–1261 (2014)

    Google Scholar 

  107. Yang, D., Ruan, X., Wu, H.: Impedance shaping of the grid-connected inverter with LCL filter to improve its adaptability to the weak grid condition. IEEE Trans. Power Electron. 29(11), 5795–5805 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinbo Ruan .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd. and Science Press

About this chapter

Cite this chapter

Ruan, X., Wang, X., Pan, D., Yang, D., Li, W., Bao, C. (2018). Introduction. In: Control Techniques for LCL-Type Grid-Connected Inverters . CPSS Power Electronics Series. Springer, Singapore. https://doi.org/10.1007/978-981-10-4277-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4277-5_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4276-8

  • Online ISBN: 978-981-10-4277-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics